
Day 2 Task 1
Memory

A game called Memory is played using 50 cards. Each
card has one of the letters from A to Y (ASCII 65 to
89) printed on the face, so that each letter appears on
exactly two cards. The cards are shuffled into some
random order and dealt face down on the table.

Jack plays the game by turning two cards face up so the
letters are visible. For each of the 25 letters Jack gets a
candy from his mother the first time he sees both copies
of the letter on the two face up cards. For example, the
first time Jack turns over both cards that contain the
letter M, he gets a candy. Regardless of whether the
letters were equal or not, Jack then turns both cards
face down again. The process is repeated until Jack receives 25 candies – one for each letter.

You are to implement a procedure play that plays the game. Your implementation should
call the procedure faceup(C) which is implemented by the grader. C is a number between 1
and 50 denoting a particular card you wish to be turned face up. The card must not currently
be face up. faceup(C) returns the character that is printed on the card C.

After every second call to faceup, the grader automatically turns both cards face down again.

Your procedure play may only terminate once Jack has received all 25 candies. It is allowed
to make calls to faceup(C) even after the moment when Jack gets the last candy.

Example.

The following is one possible sequence of calls your procedure play could make, with expla-
nations.

Call Returned value Explanation
faceup(1) ’B’ Card 1 contains B.
faceup(7) ’X’ Card 7 contains X. The letters are not equal.
The grader automatically turns cards 1 and 7 face down. .

faceup(7) ’X’ Card 7 contains X.
faceup(15) ’O’ Card 15 contains O. The letters are not equal.
The grader automatically turns cards 7 and 15 face down.

faceup(50) ’X’ Card 50 contains X.
faceup(7) ’X’ Card 7 contains X. Jack gets his first candy.
The grader automatically turns cards 50 and 7 face down.

faceup(7) ’X’ Card 7 contains X.

faceup(50) ’X’ Card 50 contains X. Equal letters, but
Jack gets no candy.

The grader automatically turns cards 7 and 50 face down.

faceup(2) ’B’ Card 2 contains B.

· · ·
(some function calls were omitted)

1 page out of 2



Day 2 Task 1
Memory

· · ·

faceup(1) ’B’ Card 1 contains B.
faceup(2) ’B’ Card 2 contains B. Jack gets his 25th candy.

1 Subtask [50 points]. Implement any strategy that obeys the rules of the game and
finishes it within the time limit.

For example, there is a simple strategy that always makes exactly 2∗(49+48+...+2+1) = 2450
calls tofaceup(C).

2 Subtask [50 taškų]. Implement a strategy that finishes any possible game with at most
100 calls tofaceup(C).

Implementation Details.

• Use the RunC programming and test environment

• Implementation folder: /home/ioi2010-contestant/memory/ (prototype: memory.zip)

• To be implemented by contestant: memory.c or memory.cpp or memory.pas

• Contestant interface: memory.h or memory.pas

• Grader interface: grader.h or graderlib.pas

• Sample grader: grader.c or grader.cpp or grader.pas and graderlib.pas

• Sample grader input: grader.in.1
Note: the input file contains one line with 50 characters denoting the letters on the
cards, in order, from 1 to 50.

• Expected output for sample grader input: if your implementation is correct, the output
file will contain OK n where n is the number of calls to faceup(C).

• Compile and run (command line): runc grader.c or runc grader.cpp or runc grader.pas

• Compile and run (gedit plugin): Control-R, while editing any implementation file.

• Submit (command line): submit grader.c or submit grader.cpp or submit grader.pas

• Submit (gedit plugin): Control-J, while editing any implementation or grader file.

2 page out of 2


