

IOI’99 DAY 1 TASK 3 TEAM:

 under 1 of 3

UNDERGROUND CITY

PROBLEM

You are imprisoned in one of the underground cities of Cappadocia. Wandering
around in the dark you find by chance the map of the city. Unfortunately, there is no
mark on the map pointing where you are. It is your task to find that out by exploring
the city.

The map of the city is a rectangular grid of unit squares. Each square is either an open
square, marked with the letter ‘O’, or a part of a wall, marked with the letter ‘W’. The
north direction is also shown on the map. Luckily, you have a compass at hand so you
can orient the map correctly. Initially, you are on an open square.

Everything starts by calling the procedure (or function) start with no arguments.
You can explore the city by using the procedures (or functions) look and move.

You can pose questions in the form of a function call look(dir) where dir denotes
the direction you are looking at, which can be one of the characters ‘N’, ‘S’, ‘E’ and
‘W’ denoting north, south, east and west, respectively. Now assume the argument dir
is ‘N’. The reply will be the letter ‘O’ if the square to your north is an open square,
and ‘W’ if it is a wall. Similarly, it is possible to look at and get information about the
other neighboring squares.

You can step into one of the four neighboring squares by calling move(dir) where
dir denotes the direction of your step as described above. You can only move to an
open square. Attempting to move into a wall would be a grave mistake. It is possible
to reach any open square of the city starting from any open square.

You are required to find the position of the open square where you found the map by
looking (calling look(dir)) minimum number of times. Once you found the position
you must report it by calling finish(x,y) where x is the horizontal (west-east)
coordinate and y is the vertical (south-north) coordinate of the position.

ASSUMPTIONS

• 3 ≤ U ≤ 100 where U is the width of the map, i.e. length, in number of squares, of
the map in the horizontal (west-east) direction.

• 3 ≤ V ≤ 100 where V is the height of the map, i.e. length, in number of squares, of
the map in the vertical (south-north) direction.

• The city is surrounded with walls, which are included on the map.
• The south-west corner of the city has the coordinate (1,1) and the north-east corner

has the coordinate (U,V).

INPUT

The input is a text file named under.inp.

IOI’99 DAY 1 TASK 3 TEAM:

 under 2 of 3

• The first line contains two numbers: U, V.
• Each of the following V lines contains a row of the map in the horizontal

direction. Each line consists of U characters, so that the x’th character on the
(V-y+2)’th line of the input file has information about the position (x,y) of the
map: It is either a letter ‘W’ denoting a wall, or a letter ‘O’ denoting an open
square. The data on these lines do not have any blanks in between.

OUTPUT

No output file will be generated. The result found by your program must be reported
by calling finish(x,y).

EXAMPLE

under.inp:

A possible interaction which ends
with the correct finish call:

Interaction:
start()
look(‘N’) ‘W’
look(‘E’) ‘O’
move(‘E’)
look(‘E’) ‘W’
finish(3,5)

INSTRUCTIONS FOR PASCAL PROGRAMMERS

Have the following in your source file:
uses undertpu;
This tpu will provide the following:
procedure start; { must be called first }
function look (dir:char):char;
procedure move (dir:char);
procedure finish (x,y:integer); { must be called last }

INSTRUCTIONS FOR C/C++ PROGRAMMERS

Have the following in your source file:
#include “under.h”
This will provide the following declarations:
void start (void); /* must be called first */
char look (char);
void move (char);
void finish (int,int); /* must be called last */

Also create a project called under which should include your program and the
library for interaction named underobj.obj. To do this you need to use the project

5 8
WWWWW
WWWOW
WWWOW
WOOOW
WOWOW
WOOWW
WWOOW
WWWWW

x (E)

 y
(N)

IOI’99 DAY 1 TASK 3 TEAM:

 under 3 of 3

menu of IDE and choose the open option to create a project, and then use add item to
include your source file (under.c or under.cpp) and the file underobj.obj.
Use the LARGE memory model compiler option. (Careful: This overrides the
memory model mentioned in the Rules of Contest.)

EVALUATION

Your program will be allowed to run 5 seconds.

To get full credit, A, for a test case the number of calls to look, x, must be less than
or equal to the number M, set by the evaluation program. Note that M is chosen as
larger than (>) the minimum. In particular, M is independent of the clockwise or
counter-clockwise ordering of the directions for looking. You can obtain partial credit
if the number of calls to look is greater than (>) M but less than (<) twice M. The
points you get is calculated by rounding to the nearest integer the value obtained by
the following formula:

A if x ≤ M
A (2M – x) /M if M < x < 2M
0 if x ≥ 2M

Illegal behavior by your program will result in zero points. Illegal behaviors specific
to this task are the following:
• Calling a library procedure (or function) with an unacceptable argument, for

example a character which does not designate a direction.
• Attempting to move into a wall.
• Failing to follow the instructions.

HOW TO TRY OUT YOUR PROGRAM

Create a text file called place.txt including the position of the map. Run your
program. See the result in the file result.txt.

The file place.txt should have one line having the horizontal and vertical
coordinates of the position of the map. You need to create your own input data file
under.inp. The result.txt file will contain two lines. The first line will have
the arguments x and y for your call to finish (x,y). The second line will have a
message of the form “You used look nnn times”. Note that this trial is for
checking the compatibility of your program with the library. It has nothing to do with
the correctness of your solution.

