

Day 2 Image

 Last updated 2011.04.07 (version 2)

Character Recognition
This problem requires you to write a program that performs
character recognition.

Details:
Each ideal character image has 20 lines of 20 digits. Each
digit is a ‘0’ or a ‘1’. See Figure 1a for the layout of
character images in the file.

The file FONT.DAT contains representations of 27 ideal
character images in this order:
 oabcdefghijklmnopqrstuvwxyz
where o represents the space character.

The file IMAGE.DAT contains one or more potentially
corrupted character images. A character image might be
corrupted in these ways:
• at most one line might be duplicated (and the duplicate

immediately follows)
• at most one line might be missing
• some ‘0’s might be changed to ‘1’s
• some ‘1’s might be changed to ‘0’s.
No character image will have both a duplicated line and a
missing line. No more than 30% of the ‘0’s and ‘1’s will be
changed in any character image in the evaluation datasets.

In the case of a duplicated line, one or both of the resulting
lines may have corruptions, and the corruptions may be
different.

Task:
Write a program to recognise the sequence of one or more
characters in the image provided in file IMAGE.DAT using
the font provided in file FONT.DAT.

Recognise a character image by choosing the font character
images that require the smallest number of overall changed
‘1’s and ‘0’s to be corrupted to the given font image, given
the most favourable assumptions about duplicated or omitted
lines. Count corruptions in only the least corrupted line in
the case of a duplicated line. All characters in the sample and
evaluation images used are recognisable one-by-one by a
well-written program. There is a unique best solution for
each evaluation dataset.

A correct solution will use precisely all of the data supplied
in the IMAGE.DAT input file.

Input:
Both input files begin with an integer N (19 ≤ N ≤ 1200) that
specifies the number of lines that follow:

N
(digit1)(digit2)(digit3) … (digit20)
(digit1)(digit2)(digit3) … (digit20)
…

Each line of data is 20 digits wide. There are no spaces
separating the zeros and ones.

The file FONT.DAT describes the font. FONT.DAT will
always contain 541 lines. FONT.DAT may differ for each
evaluation dataset.

Output:
Your program must produce a file IMAGE.OUT, which
contains a single string of the characters recognised. Its
format is a single line of ASCII text. The output should not
contain any separator characters. If your program does not
recognise a particular character, it must output a ‘?’ in the
appropriate position.

Caution: the output format specified above overrides the
standard output requirements specified in the rules, which
require separator spaces in output.

Scoring:
The score will be given as the percentage of characters
correctly recognised.

SEE OTHER SIDE FOR SAMPLES.

Day 2 Image

 Last updated 2011.04.07 (version 2)

Sample files:
Incomplete sample showing
the beginning of FONT.DAT
(space and ‘a’).

Sample IMAGE.DAT,
showing an ‘a’ corrupted

FONT.DAT IMAGE.DAT
540
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000011100000000000
00000111111011000000
00001111111001100000
00001110001100100000
00001100001100010000
00001100000100010000
00000100000100010000
00000010000000110000
00000001000001110000
00001111111111110000
00001111111111110000
00001111111111000000
00001000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

19
00000000000000000000
00000000000000000000
00000000000000000000
00000011100000000000
00100111011011000000
00001111111001100000
00001110001100100000
00001100001100010000
00001100000100010000
00000100000100010000
00000010000000110000
00001111011111110000
00001111111111110000
00001111111111000000
00001000010000000000
00000000000000000000
00000000000001000000
00000000000000000000
00000000000000000000

 Figure 1a Figure 1b

Sample output:
IMAGE.OUT Explanation
a Recognised the single character ‘a’

Figure 2

