101'94 - Day 2 - Solution 3: The Circle Page 1 of 6

|O1'94 - Day 2 - Solution 3: The Circle

[Introduction] [Problem Statement | [Test Data |

Problem Analysis

Let me start by introducing some terminology, given a circular arrangement of numbers. Number p
(not necessarily appearing in the circular arrangement) is said to be creatable, when thereisa
segment of one or more adjacent numbers in the circular arrangement with sum p. Thetail of number
mis defined asthe numbert ,t >= m such that all numbersfrom mtot are creatable and number

t +1 isnot creatable (if mis not creatable then itstail isdefined asm 1).

We can now reformulate the problem as follows. Given are numbersn, m andk with1 <= n <= 6
and1 <= mk <= 20. Theobjectiveisto find all circular arrangements of n numbers, each number
being at least k, such that the tail of misaslarge as possible. It is aso required to output that tail. In
fact, the problem statement prescribes the output more precisely: the first line contains the maximum
tail, the following lines present the circular arrangements (one per line), such that they start with
their smallest number.

Observe that creatable numbers are at least k. Thus, for m < k thetail of mism 1, because mitself is
not creatable. For k <= mthe maximum tail is at least m+n- 1, because of the circular arrangement
consisting of the n numbers m m+1, ..., m#n- 1 in arbitrary order. Since in the output these
arrangements should all start with the smallest number---that is, with m--there are (n- 1) ! such
arrangements. These arrangements and also their tail are called trivial. The trivial tail isalower
bound on the maximum tail (provided that m >= k).

N.B. The number (n- 1)! of trivial arrangementsis not an upper bound on the number of
arrangements to be output. In fact, it turns out that the input n, m k = 5, 10, 5 has 32 arrangements
for the maximum tail of 14.

From now on we assumek <= m(the Competition Rules explicitly state that all test data
will have solutions; thisalso impliesthat 1 isalower bound on the number of
arrangements to be output). Furthermore, when we speak of the tail, we mean the tail of
m

Thecasesn = 1, 2, 3 arespecial, because every non-empty subset of the numbers appears as a
segment of adjacent numbersin the circle. The case n=1 is uninteresting: the maximum tail ism
obtained by the unique arrangement m

Thecasesn = 2, 3 canalsobesolved by hand”, but they are tricky! For instance, for n=2 and m >
1 there isthe arrangement m m+1 yielding the maximum tail m+1 (observe that m+2 is not creatable
since2m+1 > m#2). But if k=1 then thereis also the arrangement m 1 yielding tail m+1. If =1, then
the arrangement 1, 2 yields the maximum tail m+2 = 3.

We have aready given the lower bound m+n- 1 on the maximum tail. We can also give an upper
bound. The maximum tail is at most the sum of all numbersin the circle. This upper bound is not
very instructive. Observethat for 1 <= p < n, there aren segments of p adjacent numbers,
Furthermore, there is a single segment of n adjacent numbers (consisting of all numbersin the
circle). Thus, in total there are (n- 1) * n+1 segment sums. In the best case every such segment creates
adifferent number. This means that the maximum tail isat most m+(n- 1) *n.

http://olympi ads.win.tue.nl/ioi/ioi 94/contest/day 2prb3/sol ution.html 2011.04.09

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb3/solution.html

101'94 - Day 2 - Solution 3: The Circle Page 2 of 6

Systematic investigation of arrangements

L et us introduce some constants, types, and variables:

const

Max_n = 6;

Max_m = 20

Max_k = 20;
type

Circle = array [1..Max_n] of integer; { intended: array [1l..n] of integer }
var

n: 1..Max_n; { input value }

m 1..Max_m { input value }

k: 1..Max_k; { input value }

Reading the input is easy. After that we will go through all possible arrangements once and store the
best arrangements so far.

var
Best Count: integer; { # best arrangenents so far }
BestArr: array [1l..1000] of Circle;
{ BestArr[1..BestCount] = best arrangenents so far }
BestTail: integer; { maximumtail found so far }

It isnot clear at this point what upper bound to choose for the array Best Arr with best arrangements
so far. We have just picked 1000. If there is enough time, then we could first go through the possible
arrangements to find out what the maximum tail is and in a second phase go through the
arrangements again to filter out the ones that have this maximum tail (possibly exploiting knowledge
about the maximum tail). That would avoid storing an unknown number of intermediate results. Y et
another solution is presented later.

The final output is produced by procedure Wi t eCut put :

procedure Wit eCQutput;

var i, j: integer;
begi n
witeln(out, BestTail:1) ;
for i := 1 to BestCount do begin
for j :=1tondo wite(out, ' ', BestArr[i][j]:2)

writel n(out)

end { for i } ;
if Test then witeln('Max tail ="', BestTail:1, '; # arr. ="', BestCount:1)
end { WiteCQutput } ;

We will use the following global variables for constructing and checking arrangements.

var
Arr: Crcle; { Arr[1..n] is the circular arrangenent }
Tail: integer; { tail of Arr[1..n] }

Given an arrangement of n numbers, procedure Conput eTai | determinesthetail of m Theideaisto
compute the sums of all segments of adjacent numbersin the circular arrangement Arr. This
generates the set of creatable numbers, from which the tail is readily derived.

procedure ComputeTai l
{ post: Tail = tail of mfor circular arrangement Arr[1l..n] }
var

http://olympi ads.win.tue.nl/ioi/ioi 94/contest/day 2prb3/sol ution.html 2011.04.09

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb3/solution.html

101'94 - Day 2 - Solution 3: The Circle Page 3 of 6

a, b, s, u: integer

Creatable: array[l..51] of boolean ; { Creatable[i] =i is creatable }
begi n
u:=1+m+ (n-1)*n; { 1 + upper bound on nmaxinumtail }
for a:=1to u do Creatable[a] := fal se
for a:=1to n do begin
s :=0; { s =sumof Arr[a..b] }
for b := ato n do begin
s :=s + Ar[b] ;
if s <= uthen Creatable[s] := true

end { for b} ;
for b := 1 to a-2 do begin
s :=s + Ar[b] ;

if s <= uthen Creatable[s] := true
end { for b}
end { for a} ;
Tail := m; { linear search for smallest uncreatable nunber }
while Creatable[Tail] do inc(Tail) ;
dec(Tail)

end { ConputeTail } ;

There are afew things to be pointed out about Conput eTai | . Because of our choice for u we know
that at least one of the numbers from mto u is not creatable. In the for-loops, a is the first sector of
the segments considered. The first b-loop considers segments that start at sector a and that do not
cycle beyond sector n. The second b-loop cycles around to sector 1 and beyond. Here we need not go
further than a- 2 because the segment consisting of all numbers was already coverd by the first loop
fora = 1 (strictly speaking it has not first sector).

For each arrangement constructed, the variablest , Best Arr, Best Tai | are updated by procedure
CheckArrangemant :

procedure CheckArrangenent;

begi n
Conput eTai | ;
if Tail > BestTail then begin { inproved arrangenent }
Best Count := 1 ; BestArr[BestCount] := Arr ; BestTail := Tai
end { then }
else if Tail = BestTail then begin { another arrangenent with sane tail }
i nc(Best Count) ; BestArr[BestCount] := Arr
end { then }

end { CheckArrangenment }

We would like to write n nested for-loops to go through all possible arrangements. Thisisalittle
difficult sincen isavariable. It can be accomplished by arecursive procedure. We have named it
Fi | | Remai nder . The outermost loop is a special case treated below.

procedure Fill Remainder(i: integer);
{ Fill remaining sectors Arr[i..n] in all possible ways }
{ pre: i >11}
var j, u: integer;
begi n

if i >nthen { all sectors filled, check whether arrangenent is useful }
CheckAr r angenent

el se begin { fill sector i in all possible ways }

if Trace then begin
for j := 1 to pred(i) do wite(Arr[j]:3) ;
witeln
end { if }

u:=m(n-1)*n ; { naive upper bound on nunbers to try }

for j := Arr[1] to u do begin { NNB. Arr[1] is smallest nunber }
Arr[i] =] ;

http://olympi ads.win.tue.nl/ioi/ioi 94/contest/day 2prb3/sol ution.html 2011.04.09

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb3/solution.html

101'94 - Day 2 - Solution 3: The Circle Page 4 of 6

Fi I | Remai nder (succ(i))
end { for j }
end { then }
end { Fill Remai nder } ;

The for-loop tries all possible numbersj at sector i . Since sector 1 contains the smallest number, |
can start at Arr[1] . the upper bound for j isless straightforward. We have picked m+(n-1) *n
because thisis the upper bound on the maximum tail. It does not make sense to include larger
numbers. It should be noted that this upper bound is rather rough, and may cause the investigation of
too many arrangements.

ProcedureFi | | Remai nder is called by procedure Conput eAnswer that aso provides the outermost
for-loop:

procedur e Conput eAnswer ;
{ pre: k <= m}

var j: integer;
begi n
Best Count := 0 ; BestTail := mtn-1 ;
for j := k to mdo begin
Arr[1] :=j ; { NB. this is the smallest nunmber in the circle }

Fi || Remai nder (2) ;
end { for j }
end { Comput eAnswer } ;

The only numbersto try in sector 1 are from k to m since smaller numbers are not alowed by
definition, and with larger numbers mwould not even be creatable. Note that for the best
arrangements we need not necessarily have Arr[1] = m An exampleis provided by the fourth test
case (see input-4.txt and output-4.txt).

All of thisis put together into Program 1. This program solves test cases 1, 2, and 4 within the time
[imit; for the others that is doubtful.

Another remark about Program 1 isthat if Best Tai | would beinitialized to O instead of m+n- 1, then
the input combinationn, m k = 5, 17, 5 would cause an overflow of thelist of (intermediate) best
arrangements:. the program would have to skip 1261 arrangements with tail 20, before finding the
first arrangement with (maximum) tail 21 (of which there are only 24). It is hard to give an upper
bound of the number of (intermediate) best arrangements. In the next program we will just start
writing the best arrangements to the output file, and overwriteit if we find an improvement.

Program 2

What improvements can we make to speed up Program 1? Why isit too slow? There are two things
that come to mind. Thefirst is that too many arrangements are checked. A reason for this could be
that the upper bound u for j in procedure Fi I | Remai nder isunnecessarily large. The second is that
when determining the tails of arrangements alot of computations are duplicated. Observe that two
arrangements that differ only in one sector share about half of their creatable numbers.

It is difficult to improve the speed by avoiding duplicate computations when determining tails of
arrangements. The main reason for thisisthat (n-1)*n/2 + 1 of the (n- 1) * n+1 segment sums can
only be computed when the last sector has been filled in. For n=6 there are 31 segment sumsto be
computed, of which 16 involve on the last sector.

At the expensive of some overhead we can determine atighter upper bound, though thisisabit
complicated. Let ustakethecasen, m k = 5, 3, 1 asan example. Consider a state where the first

http://olympi ads.win.tue.nl/ioi/ioi 94/contest/day 2prb3/sol ution.html 2011.04.09

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb3/solution.html

101'94 - Day 2 - Solution 3: The Circle Page 5 of 6

three sectors have been filled as follows:

Thecall Fi | | Remai nder (4) will try numbersat Arr [4] starting from 3 up to some upper bound. In
Program 1 this upper bound is 23. In fact, Program 1 will check 708,578 arrangements (and for each
arrangement the tail of mis determined).

The three sectors that have been filled in already determine 6 segment sums. Here isatable
indicating the creatable numbers:

Creatable | 3 5 7 8 12 15

____________________ |___________________________________
not (yet) Creatable | 4 6 9 10 11 13 14 16

Filling in sector 4 with number j impliesthat the 11 (!) segment sumsinvolving Ar r [4] will be at
least j . In total there are 21 segment sums, so there are only 21-11-6=4 segment sums that involve
Arr[5] andnot Arr[4].

Assumewetryj >= 12 thenall 11 segment sumsinvolving Arr[4] will at least 12, and the 4
remaining segment sums involving Arr [5] can then at best create the number 4, 6, 9, and 10. This
would leave 11 uncreatable, yielding atail of at most 10. Apparently, a good upper bound for j is11
(quite abit less than 23).

More in general, a better upper bound is obtained by determining which numbers are already
creatable, and by calculating the number g of segment sumsthat involve Arr[i +1. . n] and not Arr
[i].Thesegment sumsinvolving Arr[i] areall atleast Arr[i], and there will be at most g smaller
segment sums created from Arr [i +1. . n] . The (g+1)th number that is not yet creatable is a suitable
upper bound for Arr[i] because beyond that point the tail can no longer grow.

Hereis procedure Conput eUpper Bound that computes the improved upper bound:

procedur e Conput eUpperBound(i: integer; var ub: integer);
{ post: ub = upper bound for Arr[i] based on Arr[1..i-1] }
var

a, b, s, u: integer
Creatable: array[l..51] of boolean ; { Creatable[p] = p is creatable }

begi n
u:=1+m+ (n-1)*n; { 1 + upper bound on maxi mumtail }
for a:=1to u do Creatable[a] := fal se
for a:=1to pred(i) do begin
s:=0; { s =sumof Arr[a..b] }
for b := a to pred(i) do begin
s :=5s + Arr[b]
if s <= uthen Creatable[s] := true
end { for b} ;
a:=n-1i; { a=#unfilled sectors besides Arr[i] }

a .= n*a - (a*succ(a)) div 2 + 1
{ a=1+ # segment suns involving Arr[i+1..n] and not Arr[i] }
ub := m;
while a <> 0 do begin
whi | e Creatabl e[ub] do inc(ub) ;
i nc(ub) ; dec(a)
end { while }
end { Conput eUpper Bound } ;

http://olympi ads.win.tue.nl/ioi/ioi 94/contest/day 2prb3/sol ution.html 2011.04.09

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb3/solution.html

101'94 - Day 2 - Solution 3: The Circle Page 6 of 6

Thisisincorporated into a Program 2. For the casen, m k = 5, 3, 1 now only 15,173 arrangements
are checked. Thecasen, mk = 6, 1, 1 dropsfrom 28,629,151 arrangements checked by Program 1
to 156,072 by Program 2.

Variantsof this problem

What if sectors may be used more than once? We still require that they are adjacent. For example,
for n=4, we could have a segment involving the 5 sectors 2, 3, 4, 1, 2 (sector 2 being used twice).

Givenn, m k find the tail of mwith the most arrangements. Each arrangement yields atail of m We
are now interested in maximimizing the number of arrangements that yield the same tail (instead of
maximizing the tail).

Find all triplesn, m k such that for the maximum tail of mthereis at |east one arrangement whose
smallest number isless than m

Find all triplesn, m k such that their maximum tails have a maximum number of arrangements. |
noticed that n, m k = 6, 19, 6 has maximum tail 24 for which there are 150 arrangements. Can you
find triples with more arrangements for their maximum tail?

To help you on your way, thefile all.txt lists for each case its maximum tail and the number of
corresponding arrangements.

Tom Verhoeff
Eindhoven University of Technology

http://olympi ads.win.tue.nl/ioi/ioi 94/contest/day 2prb3/sol ution.html 2011.04.09

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb3/solution.html

