
IOI'94 - Day 2 - Solution 2: The Buses
[Introduction] [Problem Statement] [Test Data]

Problem Analysis
Bus routes

A bus route is characterized by the time of its first arrival at the bus stop (in minutes after 12:00) and
its interval (number of minutes between successive stops). These two numbers determine how often
a bus route stops at the observed bus stop from 12:00 to 12:59. Because this number of stops plays
an important role, it will be included with the other information to describe a bus route. Here is the
definition of type BusRoute:

type
 BusRoute = record
 first : 0..29;
 interval: 1..59; { in fact, first < interval <= 59 - first }
 howoften: 2..60; { howoften = 1 + (59 - first) div interval }
 end;

The lower bound on first is zero by definition. The upper bound and the bounds on interval are
less straighforward and we will now explain them.

Observe that the problem statement implies first < interval, since buses are known to arrive
throughout the entire hour. If first >= interval, then there would have been a stop earlier than
first at time first-interval >= 0, which contradicts the definition of first. Also observe that
the second bus arrives at time first+interval and since buses are known to stop at least twice we
therefore have first + interval <= 59. This explains the bounds on interval. The upper bound
on first can be obtained by adding the inequalities for first:

 first < interval
 first <= 59 - interval
------------------------ +
2*first < 59

from which we infer first <= 29. The number howoften is determined by the two inequalities:

first + (howoften-1)*interval <= 59
first + howoften *interval > 59

These can be rewritten into

59-first - interval < (howoften-1) * interval <= 59-first

from which we infer howoften = 1 + (59-first) div interval. So much for the bounds.
Question: How many bus routes are there?

Here is procedure for writing a bus route in a graphically appealing way. It is useful during
devopment and will help understand the problem better.

procedure GraphBusRoute(var f: text; b: BusRoute);
 var i: integer;
 begin

Page 1 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

 with b do begin
 write(f, 1:first+1) ;
 i := first + interval ;
 while (i <= 59) do begin
 write(f, 1:interval) ;
 i := i + interval
 end { while } ;
 write(f, ' ':62-i+interval) ;
 writeln(f, '[', first:2, ',', interval:2, ',', howoften:2, ']')
 end { with }
 end { GraphBusRoute } ;

GraphBusRoute writes a tally for each arrival of the bus route. The locations of the tallies on the
output line correspond to the arrival times. At the end of the line the parameters are written. The
three bus routes in the schedule appearing in the problem statement are shown by GraphBusRoute
(three calls) as follows (the first two lines with time labels are produced by WriteTimes, which is
too simple to include here):

000000000011111111112222222222333333333344444444445555555555
012345678901234567890123456789012345678901234567890123456789
1 1 1 1 1 [0,13, 5]
 1 1 1 1 1 [3,12, 5]
 1 1 1 1 1 1 1 [5, 8, 7]

The input data

The input data is a sorted list of arrival times, possibly containing duplicates. These are most
conveniently stored by counting for each arrival time how often it occurs. For this purpose we
introduce variables s and a:

var
 s: integer; { s = # unaccounted arrivals = sum a[0..59] }
 a: array[0..59] of integer; { a[t] = # unaccounted arrivals at time t }

Procedure GraphUnaccounted (listing not included) shows the arrival times in the same format as
GraphBusRoute, except that now the tallies may take on values from 0 upward (0 is displayed as a
space, and numbers above 9 are displayed as letters from A upward). The input for the example with
17 arrival times in the problem statement would be written as

000000000011111111112222222222333333333344444444445555555555
012345678901234567890123456789012345678901234567890123456789
1 1 1 2 1 1 11 1 1 2 1 111 total = 17

Compare this to the graphs of the bus routes shown above. The three rows of the bus routes nicely
add up to the row of unaccounted arrival times in the input.

The input is read from file inp by procedure ReadInput:

procedure ReadInput;
 { read input into s and a }
 var i, j: integer;
 begin
 if Test then writeln('Reading input') ;
 readln(inp, s) ;
 if Test then writeln('Number of stops = ', s:1) ;
 for i:=0 to 59 do a[i] := 0 ;
 for i:=1 to s do begin
 read(inp, j) ;
 inc(a[j])

Page 2 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

 end { for i } ;
 readln(inp) ;
 if Test then begin GraphUnaccounted ; writeln end
 end { ReadInput } ;

The following function Fits determines whether a given bus route b fits with the arrivals a, that is,
whether all stops of b occur in a:

function Fits(b: BusRoute): boolean;
 { check whether b fits with a, that is, all arrivals of b occur in a }
 { global: a }
 var i, j: integer;
 begin
 with b do begin
 i := first ; j := 60 ;
 { bounded linear search for earliest a[first + k*interval] = 0 }
 while i < j do
 if a[i] <> 0 then i := i+interval
 else j := i ;
 Fits := (i >= 60)
 end { with }
 end { Fits } ;

Finding candidate bus routes

We will first make a list of all bus routes that fit with the arrival times in the input. These are called
candidate bus routes. Observe that the total number of possible bus routes equals the number of pairs
(first,interval) with 0 <= first <= 29 and first+1 <= interval <= 59-first, which is
59+57+...+3+1 = 60*30/2 = 900.

Candidate bus routes will be stored in global array c and counted in integer n:

var
 n: integer; { # candidate bus routes }
 c: array[0..899] of BusRoute; { c[0..n-1] are candidate bus routes }

Procedure FindBusRoutes determines the candidate bus routes that fit with the given arrival times a:

procedure FindBusRoutes;
 { post: c[0..n-1] are all bus routes fitting with a }
 { global: a, n, c }
 var f, i: integer;
 begin
 if Test then begin
 writeln('Finding candidate bus routes') ;
 WriteTimes
 end { if } ;
 n := 0 ;
 for f:=0 to 29 do begin
 if a[f] <> 0 then begin
 for i:=f+1 to 59-f do begin
 with c[n] do begin
 first := f ;
 interval := i ;
 howoften := 1 + (59 - f) div i
 end { with c[n] } ;
 if Fits(c[n]) then begin { another candidate }
 if Test then GraphBusRoute(c[n]) ;
 inc(n)
 end { if }
 end { for i }

Page 3 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

 end { if }
 end { for f } ;
 if Test then
 writeln('Number of candidate bus routes = ', n:1)
 end { FindBusRoutes } ;

Procedure FindBusRoutes is quite straightforward. As usual we have included some diagnostic
output. A few things might need further explanation.

First of all, the check if a[f] <> 0 was inserted to cut off impossible bus routes as early as
possible (otherwise, for values of f with a[f]=0, all possible values of i would be tried in vain).

Second, one might be tempted to optimize a little more. For instance, the computation of howoften
could have been done only if Fits(c[n]) turned out successful. Also, the function Fits could be
adapted to exploit the fact that a[f] <> 0 was already tested, by starting Fits with i :=
first+interval instead of i := first. The main reasons for not doing so are that these changes
do not speed up things considerably (try it), and that they may complicate later uses or changes of
Fits (such as using howoften in Fits).

As an example of FindBusRoutes consider the diagnostic output produced when reading the
example input from the problem statement and finding the candidate bus routes. The 17 stops of this
input give rise to 42 candidate bus routes, of which only eight stop more than twice.

Here is an overview of the number of candidate bus routes in each test:

test number of number of
case arrivals candidates
---- -------- ----------
 0 17 42
 1 12 24
 2 44 237
 3 43 375
 4 31 136
 5 40 201
 6 70 365

Finding schedules

A schedule can be described as a list of bus routes (at most 17 according to the problem statement):

type
 Schedule = array [0..16] of BusRoute;

A schedule is written by the following procedure:

procedure WriteSchedule(var f: text; sc: Schedule; len: integer);
 var i: integer;
 begin
 for i:=0 to len-1 do with sc[i] do
 writeln(f, first:2, ' ', interval:2) ;
 if Test then writeln(f, '-----')
 end { WriteSchedule } ;

Using the candidate bus routes we can do straighforward backtracking to determine bus schedules
that exactly account for the given arrival times. We are only interested in a bus schedule with as few
bus routes as possible. For that purpose we introduce some global variables:

Page 4 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

var
 t: longint; { # schedules found so far }
 freq: array [1..17] of longint; { freq[p] = # schedules with p bus routes }
 p: integer; { # buses in partial schedule so far }
 m: integer; { # buses in best schedule so far }
 sched: Schedule; { sched[0..p-1] is schedule so far }
 best: Schedule; { best[0..m-1] is best schedule so far }

Variables t and freq are for diagnostic purposes only.

Note that, according to the problem statement, the order of bus routes in a schedule is irrelevant
(``the order of the bus routes does not matter'') and that a bus route may occur more than once
(``buses from different routes may arrive at the same time''). To avoid duplication of work we will
put bus routes in a schedule in the same order as they appear in the list of candidates and we allow
multiple occurrences of the same bus route.

The state of the backtracking process is captured by the variables s, a, p, and sched. The bus routes
sched[0..p-1] account for part of the arrival times, and the unaccounted arrival times are
represented by a (and s). Procedure Use extends the current partial schedule with a given bus route
and updates the state variables:

procedure Use(b: BusRoute);
 { global: s, a, p, sched }
 var i: integer;
 begin
 sched[p] := b ;
 inc(p) ;
 with b do begin
 i := first ;
 while (i <= 59) do begin
 dec(a[i]) ;
 i := i+interval
 end { while } ;
 s := s - howoften
 end { with } ;
 if Trace then begin
 WriteSchedule(output, sched, p) ;
 GraphUnaccounted(output)
 end { if }
 end { Use } ;

Similarly, procedure RemoveLast removes the last bus route that was used in the current partial
schedule:

procedure RemoveLast;
 { global: s, a, p, sched }
 var i: integer;
 begin
 dec(p) ;
 with sched[p] do begin
 i := first ;
 while (i <= 59) do begin
 inc(a[i]) ;
 i := i+interval
 end { while } ;
 s := s + howoften
 end { with }
 end { Remove } ;

The recursive procedure FindSchedules generates all schedules (with at most 17 bus routes):

Page 5 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

procedure FindSchedules(k: integer);
 { global: s, a, n, c, p, sched, m, best, t, freq }
 { Find all schedules sched[0..r-1] with p <= r <= 17 such that
 bus routes sched[0..p-1] are as given,
 sched[p..r-1] accounts for a and uses only bus routes from c[k..n-1] }
 begin
 if s = 0 then { nothing left to account for }
 ScheduleFound
 else if p = 17 then { too many bus routes: ignore }
 else { try each candidate c[k..n-1] that fits }
 while k < n do begin
 if Fits(c[k]) then begin
 Use(c[k]) ;
 FindSchedules(k) ;
 RemoveLast
 end { if } ;
 inc(k)
 end { while }
 end { FindSchedules } ;

FindSchedules is called as follows in procedure ComputeAnswer:

procedure ComputeAnswer;
 begin
 FindBusRoutes ;
 if Test then writeln('Finding schedules') ;
 for p:=1 to 16 do freq[p] := 0 ;
 t := 0 ; p := 0 ; m := 18 ;
 FindSchedules(0) ;
 if Test then begin
 writeln('Number of schedules = ', t:1) ;
 WriteFrequencies(out)
 end { if }
 end { ComputeAnswer } ;

For the 17 arrival times in the problem statement, FindSchedules produces 18 schedules, as shown
by the diagnostic output. The shortest has three bus routes and is unique, the longest (of which there
are three) has seven bus routes.

This method is incorporated in Program 1. It is too slow for the second test input with 44 arrival
times. Program 1 quickly finds a schedule with four bus routes (the minimum) but then continues to
look for (non-existing) improvements. Apparently there are many (longer) schedules for this test
case.

Program 2
One way of improving Program 1 is by cutting off the search for schedules in a `corner' of the search
space where it is impossible to find improvements of the best schedule so far. More precisely, if p is
the number of bus routes in the current partial schedule, then we will see to it that p < m holds
invariantly. If s=0 then we have a schedule that is also an improvement of the best schedule so far.
If, however, s<>0 then we can stop searching in this corner if p+1=m since at least one more bus
route is needed to complete the schedule, and therefore it will never result in an improvement. Here
is the adapted code:

procedure FindBestSchedule(k: integer);
 { global: s, a, n, c, p, sched, m, best }
 { Find all schedules sched[0..r-1] with p <= r < m such that
 bus routes sched[0..p-1] are as given,
 sched[p..r-1] accounts for a and uses only bus routes from c[k..n-1] }

Page 6 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

 { pre: p < m }
 begin
 if s = 0 then { nothing left to account for }
 ScheduleFound
 else { try all candidates c[k..n-1] that fit }
 while (k < n) and (p+1 <> m) do begin
 if Fits(c[k]) then begin
 Use(c[k]) ;
 FindBestSchedule(k) ;
 RemoveLast
 end { if } ;
 inc(k)
 end { while }
 end { FindBestSchedule } ;

Note that we have not written

 else if p+1 = m then { too many bus routes: ignore }
 else { try all candidates c[k..n-1] that fit }
 while k < n do begin

because m may be changed inside the while-loop by the recursive call to FindBestSchedule.

This idea is incorporated in Program 2. This program indeed only tries one schedule for input-1.txt
and input-2.txt. However, on the other input files it still takes (too) long.

Program 3
Yet another idea that might help improve performance is based on reordering the list of candidate
bus routes. For Program 1, the order of the candidate bus routes does not matter, since this program
generates all schedules. Using a different order of candidate buses simply means that all schedules
are found in a different order.

Program 2 might benefit from another order for the candidates, because if it finds a good schedule
early on, then the built-in cut-off mechanism is more efficient. Since we are interested in schedules
with the fewest bus routes, each bus route in the schedule should account for as many arrivals as
possible. Therefore, we might first try bus routes that make many stops.

Program 3 sorts the candidate bus routes on howoften as they are found. The diagnostic output for
the input in the problem statement shows the sorted list of 42 candidate bus routes. Sorting turns out
to make only a small difference. Program 3 still takes too long for input-3.txt.

Program 4
Programs 2 and 3 aimed at reducing the number of schedules investigated. We can also directly aim
at reducing the number of partial An adapted procedure FindBestSchedule is here:

procedure FindBestSchedule(k: integer);
 { global: s, a, n, c, p, sched, m, best }
 { Find all schedules sched[0..r-1] with p <= r < m such that
 bus routes sched[0..p-1] are as given,
 sched[p..r-1] accounts for a and uses only bus routes from c[k..n-1] }
 { pre: p < m }
 begin
 if s = 0 then { nothing left to account for }
 ScheduleFound
 else begin { try all candidates c[k..n-1] that fit }

Page 7 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

 while (k < n) {c}and (c[k].howoften > s) do inc(k) ;
 while (k < n) {c}and (p + 1 + (s-1) div c[k].howoften < m) do begin
 if Fits(c[k]) then begin
 Use(c[k]) ;
 FindBestSchedule(k) ;
 RemoveLast
 end { if } ;
 inc(k)
 end { while }
 end { else }
 end { FindBestSchedule } ;

The first while-loop skips candidate bus route that make too many stops for the remaining
unaccounted arrival times. The second while-loop breaks off as soon as the remaining candidate bus
routes make so few stops that improvement is no longer possible. Note that I have written {c}and to
remind myself (and you) that this conjunction is conditional (using short-circuit boolean evaluation).
That is, if the first conjunct already evaluates to false then the second conjunct is not evaluated (in
our case it is then even undefined).

Observe that this technique only works if the list of candidate bus routes is sorted on howoften. In
that case a lower bound can be given on the number of bus routes needed to complete the schedule.
The technique is sometimes called branch-and-bound. It is used in Program 4, which is so effective
that all six input files are done in an instant. For all of them only one or two (complete) schedules are
considered.

Variants of this problem
What changes should be made to the programs if all bus routes in a schedule should be different?
What about generating all minimal schedules?

Write an auxiliary program that generates all bus routes, sorts them on how often they stop, and then
puts this data in a file `routes.dat'. Investigate whether using this file, instead of generating them
inside the main program, can speed up the generation of all candidates.

Tom Verhoeff
Eindhoven University of Technology

Page 8 of 8IOI'94 - Day 2 - Solution 2: The Buses

2011.04.09http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

http://olympiads.win.tue.nl/ioi/ioi94/contest/day2prb2/solution.html

