
Analysis: MAG
Magical stones
HISTORY:
• v. 2.00: 2008.27.03, JR, translation into English
• v. 1.00: 2006.12.03, AN, task analysis

dokument systemu SINOL 1.6

1 Model solution
Solution of this task consists of finding the ith in the lexicographical order word composed of n digits 0 (I)
and 1 (X) satisfying two conditions:

• (a) numbers 0 and 1 are next to each other at at most k positions,

• (b) the word read the other way around (from right to left) is not lexicographically less than the original
word.

From now on we will call each word satisfying the above conditions a correct word.

Let us introduce some notations. σ(a1 . . .am) denotes the number of correct words that start with the prefix
a1 . . .am and σ(a1 . . .am,bm′ . . .b1) — the number of correct words that start with the prefix a1 . . .am and end
with the suffix bm′ . . .b1 (if m+m′ > n then the prefix and suffix intersect).
We will be finding the symbols of the ith word one by one, from left to right. We start with a task of finding
the ith in the lexicographical order correct word starting with the prefix ε.

In order to find the jth in the lexicographical order correct word starting with the prefix a1 . . .am, we will
compute σ(a1 . . .am0). σ(a1 . . .am0) ≥ j then the requested word is the jth correct word starting with the
prefix a1 . . .am0. In the opposite case the requested word is the (j−σ(a1 . . .am0))th correct word starting
with the prefix a1 . . .am1.

Now we show how to compute values σ(a1 . . .am). Each correct word that starts with the prefix a1 . . .am is of
exactly one of the following forms:

• (1) l final letters of the word (where 0≤ l < m) read from right to left are exactly the same as l starting
letters of the word, 0 is the (l+1)st letter from the beginning of the word and 1 is the (l+1)st letter from
the end of the word (in other words, the considered word is of the form a1 . . .al0al+2 . . .am . . .1al . . .a1).

• (2) m final letters of the word read from right to left are the same as m starting letters of the word.

This leads to the following formula:

σ(a1 . . .am) =
m−1

∑
l=0

([al+1 = 0] ·σ(a1 . . .am,1al . . .a1))+σ(a1 . . .am,am . . .a1).

Let us notice that we will be only computing values of σ with am = 0.
Let us assume that in the word a1 . . .am letters 0 and 1 are next to each other at km positions, whereas in the
word 1al . . .a1 — at kl positions.

We now show that if 2m ≤ n then σ(a1 . . .am,am . . .a1) = 1
2 · (∑

k−2km
2

i=0

(n−2m+1
2i

)
+ ∑

k−2km
2

i=0

(n−2m+1
2
i

)
): The

number of words of the form a1 . . .am . . .am . . .a1 that satisfy condition (a) is ∑

k−2km
2

i=0

(n−2m+1
2i

)
— there are

1

n− 2m free positions in the word, so a change of letter (0 → 1 or 1 → 0) could take place at any of n−
2m+1 positions; we also know that the number of letter changes is even. The number of words of the form

a1 . . .am . . .am . . .a1 that satisfy condition (a) and are palindromes is ∑

k−2km
2

i=0

(n−2m+1
2
i

)
) — half of the word can

be filled arbitrarily, using no more than k−2km
2 letter changes, and the remaining part of the word is uniquely

determined. Only a half of words that are not palindromes satisfies condition (b), so the above formula holds.

Similarly, if m + l + 1 ≤ n and al + 1 = 0,am = 0 then σ(a1 . . .am,1al . . .a1) = ∑

k−kl−1
2

i=0

(n−m−l
2i+1

)
— we

can choose the places of letter changes from n−m− l positions, taking care that the total number of letter
changes is odd (bacause am = 0) and is not greater than k− kl .

If the prefix and the suffix intersect (condition 2m > n or m+ l +1 > n holds) then the number of correct
words with the desired prefix or suffix is equal to 0 or 1 and this number can be computed in a straightforward
manner.
An improvement of complexity of the algorithm can be achieved by keeping partial sums ∑

j
i=0

(c
2i

)
and

∑
j
i=0

(c
2i+1

)
in an auxiliary array. Computation of the numbers of neighbouring zeroes and ones for changing

prefixes and suffixes can be performed in constant time. In conclusion, time complexity of the whole algo-
rithm is O(n2) (values of the form σ(a1 . . .am) are computed n times and the time complexity of computing
one such value is linear in terms of n).

A last remark should be done about the case when σ(ε) < i — in this case the desired word does not exist.
Such situation can be easily recognized — after performing n steps of the algorithm a word consisting of n
ones would be achieved and the index j of the requested word with that prefix would be greater than 1.

2 Other solutions
Files prog/mags0.cpp and prog/mags2.pas contain implementations of the simplest and most straight-
forward solution of this task. This solution consists of generating words of length n consisting only of letters
0 and 1 and checking, for each one of them, if it is a correct word. The ith correct word found is the output of
the algorithm. The time complexity of this solution is O(n · i).

Files prog/mags1.cpp and prog/mags3.pas contain an improved version of the previous solution
in which the process of verification of correctness of a single word has amortized O(1) time complexity, so
the total time complexity of the algorithm is O(i).

3 Incorrect solutions
File prog/magb0.cpp contains an implementation of an algorithm in which the bound on the number of
neighbouring zeroes and ones in Xi-n-k stones is ignored. Time complexity of this solution is O(n2), which
is the same as the complexity of the model solution. This solution gives correct results in case if the value of
parameter k is quite large in terms of the length of the words n (this solution is always correct if k = n− 1)
and for small values of parameter i.

File prog/magb1.cpp contains an implementation of an algorithm that does not take into consideration
the condition that each correct word must not be greater lexicographically than its upside-down equivalent.
This solution gives correct results if i is sufficiently small in terms of n.

File prog/magb2.cpp contains a programme that simply outputs the ith word of length n in the lexico-
graphical order.

The algorithm implemented in the file prog/magb3.cpp is very similar to the model solution, but it
uses the formula

(n
k

)
= n!

k!·(n−k)! to compute the binomial coefficients. For values of n about 20 or greater this
causes an overflow of 64-bit integer type.

2

4 Limits
The limits on the input data (in particular, the limit n ≤ 60) are such that all computations in the model
solutions can be performed on 64-bit integers, so there is no need to implement large integer arithmetical
operations.

The choice of limits enables differentiation of solutions with time complexity O(n2) or O(n3) from O(i)
or O(n · i) solutions. However, differentiating solutions with complexities O(n2) and O(n3) is impossible,
but this is not a problem because solutions with complexity O(n3) are not significantly easier than O(n2)
solutions.

5 Tests
4 tests for the contestants and 15 groups of tests for the contest were prepared.

• mag1ocen.IN (ε sek.) n = 6,k = 4 — easy test for the contestants

• mag2ocen.IN (ε sek.) n = 10,k = 3 — easy test for the contestants

• mag3ocen.IN (ε sek.) n = 12,k = 11 — easy test for the contestants with answer NO SUCH STONE

• mag4ocen.IN (ε sek.) n = 20,k = 18 — easy test for the contestants

• mag1.IN (ε sek.) n = 12,k = 7 — simple test for correctness

• mag2a.IN (ε sek.) k = 0 — simple test for correctness

• mag2b.IN (ε sek.) n = 14,k = 7 — simple test for correctness

• mag3a.IN (ε sek.) n = 10,k = 9 — simple test for correctness with answer NO SUCH STONE

• mag3b.IN (ε sek.) n = 18,k = 15 —simple test for correctness

• mag4.IN (ε sek.) n = 20,k = 8 — simple test for correctness

• mag5.IN (ε sek.) n = 25,k = 13 — simple test for correctness

• mag6.IN (ε sek.) n = 30,k = 27

• mag7.IN (ε sek.) n = 45,k = 30

• mag8.IN (ε sek.) n = 40,k = 35

• mag9.IN (ε sek.) n = 47,k = 20

• mag10.IN (ε sek.) n = 50,k = 40

• mag11.IN (ε sek.) n = 55,k = 35

• mag12.IN (ε sek.) n = 55,k = 49

• mag13.IN (ε sek.) n = 58,k = 47

• mag14.IN (ε sek.) n = 60,k = 49

• mag15a.IN (ε sek.) n = 60,k = 57

3

• mag15b.IN (ε sek.) n = 60,k = 57 — a query for the first stone in lexicographical order

The solution with time complexity O(n · i) passes first four tests and the solution with time complexity
O(i) — first five tests.

Some groups of tests were created so that programmes that always output NO SUCH STONE and programs
that ignore one of the conditions of stone’s correctness do not score any points.

The times were measured on a computer with CPU 1.7 GHz.

4

