
BOI’2008
Tasks and Solutions

Gdynia, 2008

Authors:

Szymon Acedański
Zbigniew Czech
Marian M. Kędzierski
Marcin Kubica
Jakub Łącki
Martin Maas
Jimmy Mårdell
Anna Niewiarowska
Martins Opmanis
Paweł Parys
Linas Petrauskas
Michał Pilipczuk
Wolfgang Pohl
Jakub Radoszewski
Laur Tooming
Ahto Truu
Wojciech Tyczyński
Szymon Wąsik
Filip Wolski

Editors:

Marcin Kubica
Jakub Łącki
Jakub Radoszewski

c© Copyright by Komitet Główny Olimpiady Informatycznej
Ośrodek Edukacji Informatycznej i Zastosowań Komputerów
ul. Nowogrodzka 73, 02-018 Warszawa

Contents

Preface . 5

Elections . 7

Game . 11

Gates . 17

Gloves. 25

Grid . 29

Mafia . 35

Magical stones. 39

Marcin Kubica

Preface

Baltic Olympiad in Informatics (BOI) is an annual competition that gathers
the best teen-age programmers from countries surrounding the Baltic Sea.
The 14-th BOI was held in Gdynia, Poland, between April 17 and April 23,
2008. The competition was organized in Pomeranian Science and Technology
Park. Ten countries took part in the competition: Denmark, Estonia, Finland,
Germany, Latvia, Lithuania, Norway, Poland, Sweden and Switzerland.
There were two competition days preceded with one practice day, with three
tasks during each competition day and one task during the practice day.

This booklet presents tasks from BOI’2008 together with the discussion
of their solutions. More information about this competition, including the
results and test data used during the evaluation of solutions, can be found at
http://b08.oi.edu.pl/. We hope that this booklet will prove to be useful
to both organizers and participants of various programming contests.

Marcin Kubica

Gdynia, Poland, April 2008

Laur Tooming, Ahto Truu
Task idea and formulation

Michał Pilipczuk
Analysis

BOI’2008

Elections

The citizens of Byteland have recently been voting in the parliamentary
elections. Now, when the results have been published, the parties have to decide
on a coalition to form the government.
Each party received a certain number of seats in the parliament. The

coalition must be a subset of the parties such that together they have strictly
more than half of all the seats in the parliament. It is desirable for the coalition
to have as many seats as possible, to ensure they can still pass their proposed
laws even if a few of their members are absent from a parliament session.
A coalition is called redundant if one of its parties can be removed with

the remaining ones still having more than half of the seats in the parliament.
Of course, such a removable party would effectively have no power — the
other members of the coalition would be able to force the laws regardless of its
opinion.

Task

Write a program that:

• reads the election results from the standard input,

• finds a non-redundant coalition that has the maximal possible number
of seats in the parliament,

• writes the description of this coalition to the standard output.

Input

The first line of the standard input contains one integer n (1 6 n 6 300)
— the number of parties that participated in the elections. The parties are
numbered from 1 to n.
The second line contains n nonnegative integers a1, . . . ,an, separated by

single spaces, where ai is the number of seats received by the i-th party. You
may assume that the total number of seats in the parliament will be positive
and lower or equal to 100 000 .

8 Elections

Additionally, in test cases worth 40% of points, the number of parties will
not exceed 20 .

Output

The first line of the standard output should contain one integer k— the number
of parties in a non-redundant coalition which has the maximal number of seats.
The second line should contain k distinct integers separated by single spaces

— the numbers of parties that form the coalition.
If there are several non-redundant coalitions with the maximal number of

seats, you may output any of them. The member parties can be listed in any
order.

Example

For the input data:
4
1 3 2 4

the correct result is:
2
2 4

Solution

Firstly, let us observe that a coalition is non-redundant iff without member
party with the smallest number of seats it does not have the majority in
the parliament. Obviously, every non-redundant coalition has this property.
Moreover, if exclusion of the smallest party breaks the majority, then
exclusion of each larger party breaks it as well. Hence, all non-redundant
coalitions can be generated from subsets of parties not having majority by
adding a party not larger than any party already included.

In the first step of the algorithm the results of parties are to be sorted
in non-ascending order of the number of seats. As there are at most 300
parties, this step can be performed using any sorting algorithm, even running
in O(n2) time. From now on, we assume that the numbers of seats of parties
a1,a2, . . . ,an satisfy a1 > a2 > . . . > an.

In the second step, we apply dynamic programming approach. Let s be
the total number of seats in the parliament, s = a1 + a2 + . . . + an. We use
an array partyUsed[0..s]. The parties are processed in the order from the
largest one to the smallest one. Let us assume that we have already considered
the first k− 1 largest parties. For all i = 1, . . . ,s we consider such subsets

Elections 9

Ii ⊆ {1, . . . ,k}, that ∑ j∈Ii a j = i, and either i 6 b s
2c or Ii represents a non-

redundant coalition. In partyUsed[i] we store the maximum element that
can appear in some Ii (if there is no possible Ii, then partyUsed[i] = −1).
Additionally, partyUsed[0] = 0.

Let us analyse, how such a data structure can be maintained in consecutive
values of k. Initially, for k = 0, partyUsed[1..s] is filled with −1. Party
k should be added to a set of parties having no more than b s

2c seats.
Hence, for all i = 0, . . . ,b s

2c, if partyUsed[i] 6= −1, then the new value of
partyUsed[i+ak] is equal k. All values assigned to partyUsed[i] for i > b s

2c
correspond to (the smallest parties in) non-redundant coalitions.

In the third step, we reconstruct the largest non-redundant coalition.
The number of seats in such a coalition is the largest such index j, that
partyUsed[j] > 0. The resulting coalition {i1, i2, . . .} can be reconstructed
as:

i1 = partyUsed[j]
i2 = partyUsed[j−ai1]
i3 = partyUsed[j−ai1 −ai2]

...

The first step of the algorithm can be implemented in O(n logn) running time.
The second step requires O(n · s) time — for each of n possible values of k
we consider O(s) values. The last step has O(n) complexity, since the result
cannot be larger. Since s > n, even if we use sorting running in O(n2) time in
the first step, the overall time complexity of the algorithm is still O(n · s). The
memory complexity is clearly O(s).

Less Efficient Solutions

Algorithm 1. (40 points) One of the inefficient algorithms considered is a
simple back-tracking with time complexity O(n ·2n). For all 2n sets of parties,
we check (in O(n) time) whether the set is a non-redundant coalition. The
solution is straightforward and scores only the guaranteed amount points.

This solution can also be implemented in a randomized way. Instead of
considering all the possible subsets, we pick at random as many sets, as the
time limit allows, and print the best non-redundant coalition found. If the
number of parties is small, the chance of finding the optimal solution is quite

10 Elections

big. However, for larger values of n, the algorithm has problems with finding
even a single non-redundant coalition, not to mention the largest one.

Algorithm 2. (50 points) This algorithm is an improved version of the
previous one. While recurrently constructing sets of parties, their numbers
of seats are computed, and only coalitions having majority are checked.
Moreover, after achieving more than a half of all the seats, the search is
not continued, since adding any further parties would result in a redundant
coalition. The search is also pruned if even including all the remaining parties
would not result in majority. These optimizations improve running time, but
it is still exponential. However, such a solution scores ten points more.

Algorithm 3. (75 points) In this algorithm dynamic programming is ap-
plied, but in a inefficient way. For each party i, we assume that it is the
smallest one in some non-redundant coalition. The rest of such a coalition
should contain some of the parties 1, . . . , i, and the total number of their seats
should be greater than b s

2c− ai and not greater than b s
2c. We can look for

such a set of parties using dynamic programming similar to that used in the
model solution. Since we apply this step n times, the overall time complexity
of this algorithm is O(n2 · s).

Jimmy M◦ardell
Task idea and formulation

Szymon Wąsik
Analysis

BOI’2008

Game

Two players, A and B, play a game on a square board of size n×n. The
squares of the board are either white or black. The game is played only on the
white squares — the black ones are excluded from the game. Each player has
one piece, initially placed at this player’s starting point — one of the white
squares on the board. The starting point of A is different than that of B.
In each move a player moves his piece to one of the neighboring white

squares (either up, down, left or right). If the player moves his piece to the
square currently occupied by his opponent’s piece, he gets an extra move (this
way he jumps over the opponent). Note that in this case the direction of the
second move can be different than that of the first move.
Player A moves first, then players alternate. The goal of the game is

to reach the opponent’s starting point. The player whose piece reaches his
opponent’s starting point first, wins the game. Even if the player’s last move
consists of two jumps, and he only jumps over his opponent’s starting point
(since it is occupied by his opponent), the player wins. We want to determine
which player has a winning strategy (a player has a winning strategy if he can
win regardless of his opponent’s moves).

Figure 1. If A moves to the right on his first three moves, B will move up
the first three moves. Thus, on the third move player B will reach the square
with A’s piece and will be allowed to move again. Because of this, B will reach
A’s starting point first and will win the game.

12 Game

Figure 2. A can start by moving one step to the right and one step down.
Then, depending on the first two moves of B, he will either go down or right
and evade B. This way A will reach B’s starting point first, thus winning the
game. In fact we proved that A has a winning strategy.

Task

Write a program, that:

• reads the layout of the grid and the starting points of the two players
from the standard input,

• finds the player who has a winning strategy,

• writes the result to the standard output.

Input

The first line of the standard input contains one integer t the number of test
cases (1 6 t 6 10). After it the description of t tests appears. Each test
is described as follows. In the first line of the test there is one integer n
(2 6 n6 300), the length of the side of the grid. Then next n lines contain
the description of the grid. Each line consists of n characters (with no white-
spaces between them). Each character is either ’.’ (a white square), ’#’ (a
black square), ’A’ (the starting point of A) or ’B’ (the starting point of B).
You may assume that there exists a path of white squares between the

starting points of A and B.
Additionally, in test cases worth 60% of points, n6 150 and in test cases

worth 40% of points, n6 40 .

Game 13

Output

For each test case exactly one line should be printed to standard output
containing a single character ’A’ or ’B’, indicating the player who has a winning
strategy.

Example

For the input data:
2
4
A...
.#..
....
...B
4
A...
....
..#.
...B

the correct result is:
B
A

Solution

The problem is a typical game theory problem. Let us denote by D the
distance between A’s and B’s starting points. Both players have the same
distance D to travel. Therefore, it is obvious that both players should move
along a shortest path between starting points. Otherwise a player would make
at least D + 1 moves and his opponent would win. Since player A moves
first, he will win if and only if player B is unable to reach the same square as
player A in D/2 moves. Hence, if D is odd, then A wins. So, from now on,
we assume that D = 2d.

Since players move along shortest paths it is easy to find for each player
all such squares, that can be reached in exactly p moves. We can do this by
running the BFS algorithm twice and finding the distances from A’s and B’s
starting points to all the squares. After p moves, player A can be on one of
the squares whose distance to A’s starting point is p and the distance to B’s
starting point is D− p (and conversely for player B).

14 Game

This basic observation is necessary to solve this problem correctly, as it
gives us the order in which all configurations of A’s and B’s positions should
be processed.

Model Solution — O(n3) Time, O(n2) Memory

This solution uses simple dynamic programming. Let LAk and LBk be the
lists of such squares which can be reached by players A and B, respectively,
in k moves, and can be reached their respective opponent in D−k moves. By
LAk[i] and LBk[i] we will denote the i-th elements of these lists. Let Tk,i, j be
true if after d−k moves player A has a winning strategy, when his piece is on
the square LAd−k[i] and player B is on the square LBd−k[j]. If B has a winning
strategy, then Tk,i, j is false. Please note, that LAd equals LBd , and T0,i, j is true
for all i and j such, that LAd [i] 6= LBd [j] (that is, the pieces cannot stand on
the same square).

Please note that A has a winning strategy, iff he can make such a move,
after which B can only make moves, after which A still has a winning strategy.
More formally, let NextAk,i be the list of squares from LAd−k+1 onto which
player A can move from LAd−k[i]. Let NextBk, j be a similar list for player B.
If for some i′ ∈ NextAk,i, for all j′ ∈ NextBk, j the value of Tk−1,i′, j′ is true,
then Tk,i, j is true, otherwise it is false.

Using the above observation, we can calculate values Tk,i, j for
k = 1,2, ..,d. Player A has a winning strategy in the whole game if and only
if Td,1,1 is true.

The only problem is to compute NextA and NextB lists efficiently. For
square (x,y) where one of the players can be after k moves, we can easily find
all squares (x′,y′) where this player can be after k + 1 moves. The problem
is to find the position of (x′,y′) on the LAk+1 and LBk+1 lists. But since each
square is present on at most two such lists, when we add some square to some
list we can also store its position on an appropriate list.

Since each value Tk,i, j can be computed in constant time, the total time
complexity is O(n3). Please note, that although there are O(n3) values Tk,i, j,
we only have to store Tk,i, j for two consecutive values of k. Moreover, since
each square belongs to at most two lists LA/LB, these lists occupy O(n2)
memory. Therefore, the overall memory complexity is O(n2).

Game 15

Slower Solution — O(n3 logn) Time, O(n3)Memory

This solution is similar to the correct solution but instead of LA and LB
lists, and T array it stores configurations of pieces in a dictionary where
T (ax,ay,bx,by) is true if and only if A has a winning strategy, when piece
A is on the (ax,ay) square and piece B is on the (bx,by) square. The
implementation of the dictionary adds a factor of logn to the time complexity.
Since all the configurations must be stored, the memory complexity is O(n3).

This solution scores 60 % of points.

Slower Solution — O(n3) Time, O(n4) Memory

This solution is similar to the previous one, but instead of a dictionary it uses
a 4-dimensional array. The time complexity is O(n3), but the memory used is
O(n4). This solution scores 40 % of points.

Linas Petrauskas
Task idea and formulation

Wojciech Tyczyński
Analysis

BOI’2008

Gates

After many years of working as a software developer you have decided to try
something entirely different, and started looking at random job offers. The one
that really caught your eye was a job in fish farming (a form of aquaculture).
’Cool!’, you thought, and besides, fish are nice creatures. So you applied, got
accepted, and today is your first day at work.
Your boss has already assigned you a task. You have to isolate one water

reservoir from another. After looking at some schemes you’ve been given,
here’s what you’ve figured out.
The two water reservoirs are connected by several channels. Each channel

has two gates. The channel is open when both gates are open, and is closed
otherwise. The gates are controlled using switches. The same switch may
operate several gates, but each gate is operated by exactly one switch. It is
possible that both gates on a channel are controlled by the same switch and
that a switch controls no gates.

Example with three channels and two switches.

The switch may operate the gate in one of two ways:

18 Gates

• the gate is open when the switch is on, and is closed when the switch is
off,

• the gate is closed when the switch is on, and is open when the switch is
off.

After playing a bit with the switches you suddenly realize that your
programming experience will come in very handy. Write a program that, given
the configuration of gates and switches, determines whether it is possible to
close all channels, and if it is, then finds a state of every switch in one such
valid configuration.

Input

The first line of the standard input contains two integers n (1 6 n6 250 000)
and m (1 6m6 500 000), the number of channels and switches respectively.
Switches are numbered from 1 to m. Additionally, in test cases worth at least
30% points, n will not exceed 40 and m will not exceed 20 .
The following n lines describe channels, each channel is described by a

separate line containing four integers: a, sa, b, sb. Numbers a and b represent
switches (1 6 a,b6m) that operate gates of this channel. Numbers sa and sb
can be either 0 or 1 and correspond to the described operation modes: si = 0
means that the gate is closed if and only if the switch i is off and si = 1 means
that the gate is closed if and only if the switch i is on.

Output

If it is possible to close all the channels, the standard output should contain
m lines. Line i should contain 0 , if switch i should be off, and 1 if switch i
should be on. If there are many possible solutions, your program may output
any of them.
If it is impossible to close all channels, your program should output one

line, containing a single word IMPOSSIBLE.

Gates 19

Example

For the input data:
3 2
1 0 2 1
1 0 2 0
1 1 2 1

the correct result is:
0
1

and for the input data:
2 1
1 0 1 0
1 1 1 1

the correct result is:
IMPOSSIBLE

The first example corresponds to the picture from the task description.

Solution

Let us denote the state of i-th switch by ai. We can think about ai as a Boolean
variable, which is true when the switch is turned on. Using this approach, all
we have to do is to find a valuation of these variables fulfilling task conditions.
Moreover, we can easily transform the problem to the language of logic. We
show it using the example from the task statement:

3 2
1 0 2 1
1 0 2 0
1 1 2 1

In this example we have two switches. As a result, we will have two
variables a1 and a2. If we look at the channel number one we will see that
switch number one has to be off or switch number two has to be on in order for
this channel to be closed. For each channel, we can create a logical formula:

• channel 1: ¬a1∨a2

• channel 2: ¬a1∨¬a2

• channel 3: a1∨a2

Since we are looking for a configuration that closes all the channels, we
have to make a conjunction of the constructed logical formulas:

(¬a1∨a2)∧ (¬a1∨¬a2)∧ (a1∨a2)

20 Gates

Our task is to find a valuation of variables a1 and a2 that satisfies the
above formula. In general, the problem of satisfying a given logical formula
is known to be NP-complete. Fortunately, the formula obtained in this task is
of a very special form:

(x1
1∨ x2

1)∧ (x1
2∨ x2

2)∧ . . .∧ (x1
n∨ x2

n)

where x1
i and x2

i are literals and each of them stands for some variable a j or
negated variable ¬a j. The literals x1

i and x2
i correspond to the gates on the i-th

channel. The formula is a conjunction of alternatives of exactly two literals.
This form is called the second conjunctive normal form (2-CNF). We show
that this problem can be solved in linear time.

For the remaining part of the analysis we assume that our goal is to
find such a valuation of variables a1,a2,. . . ,am, that the following formula
is satisfied:

(x1
1∨ x2

1)∧ (x1
2∨ x2

2)∧ . . .∧ (x1
n∨ x2

n)

2-CNF Formulas and Graphs

Let us consider an undirected graph G = (V,E) with vertices corresponding
to all possible literals:

V = {a1,¬a1,a2,¬a2, . . . ,am,¬am}

and edges connecting pairs of literals which appear in alternatives of the
formula

E = {(l1
i , l2

i) : i = 1,2, . . . ,n}

Graph G is shown on the following figure.

!a2

a1 a2

!a1

Gates 21

Our goal is to select a subset W ⊆V containing vertices corresponding to
literals which have to be true in order for the formula to be true. For that the
following conditions have to be satisfied:

(a) either ai ∈W or ¬ai ∈W , for i = 1,2, . . . ,m

(b) for every edge (u,v) ∈ E, u ∈W or v ∈W

Let us construct a directed graph G1 = (V,E1) using the definition of
graph G:

E1 = {(¬u,v) : (u,v) ∈ E}

We will call it the inference graph because it can be used to find which
vertices have to belong to W , provided that some given vertex has already
been included in it. The inference graph has 2m vertices and at most 2n
edges. The inference for graph G is shown below.

!a2

a1 a2

!a1

Looking at this graph it is easy to notice that every W ⊆ V , which is a
correct solution of our problem, must satisfy the condition:

(w ∈W ∧ (w,v) ∈ E1)⇒ v ∈W (1)

This logical formula is equivalent to condition (b). As a result we can
search for W ⊆V using inference graph.

Let us denote
Induced(u) = {v : u 7→ v}

where u 7→ v means that there exists a path from vertex u to vertex v in graph
G1. Using this definition we can easily rewrite (1) as:

w ∈W ⇒ Induced(w)⊆W

22 Gates

If a set Induced(v) contains two opposite vertices (w ∈ Induced(v) and
¬w ∈ Induced(v)) we will call the vertex v problematic.

Let us introduce another kind of undirected graph: a conflict graph. Using
condition (b) we can say that for every edge (u,v) ∈ E of graph G it is not
possible for ¬u and ¬v to be both in W . We can say that these vertices are in
conflict. Therefore, we can build a conflict graph G2 = (V,E2) where:

E2 = {(¬u,¬v) : ((u,v) ∈ E)∨ ((v,u) ∈ E)}

Conflict graph for our example is shown below.

!a2

a1 a2

!a1

Using these definitions and facts we can show a solution for the problem.

Solution

Naive Solution. The first naive solution uses backtracking approach. For
every possible evaluation of the logical variables we check if the formula is
satisfied. Obviously, this algorithm runs in exponential time.

Polynomial Solution. Using previously introduced definitions we can solve
this problem with the following method:

1. W = /0

2. while |W |< m repeat

• let x be a vertex such that x /∈W and ¬x /∈W

• if both x and ¬x are problematic then solution does not exist (stop
the algorithm)

• let v be a non-problematic vertex among x and ¬x

Gates 23

• W := W ∪ Induced(v)

3. W is a correct solution for our problem

It is not obvious that this algorithm really returns a correct answer. To see
that, let us show the following lemma.

Lemma 1. Let A be a set of vertices a, such that a /∈ Induced(v) and
¬a /∈ Induced(v). If vertex v is non-problematic then there is not an edge
in the conflict graph between any pair of vertices from A and Induced(v).

Proof: Let a be a vertex from A and u be a vertex from Induced(v).
If there was a conflict between a and u there would have to be an edge
(u,¬a) in the inference graph G2. As a result there would have to be:
¬a ∈ Induced(u) ⊆ Induced(v). But ¬a /∈ Induced(v) by the definition of
A. �

This Lemma shows the correctness of the presented algorithm — setting
the value of a certain variable in a way not leading to a contradiction
does not affect the vertices not belonging to Induced(v) and thus leads
to a proper solution, if one exists. This solution has the overall time
complexity O(m(n + m)), as checking if a vertex is problematic may take
time proportional to the size of the graph.

Model Solution. Let us think about strongly connected components of the
inference graph. (Two vertices u and v belong to the same strongly connected
component if and only if there is a path from u to v as well as from v to
u). Strongly connected components of an inference graph have a very useful
property for us: for any component C ⊆ V , either C ⊆W , or C

T
W = /0, as

every vertex induces its whole component. As a result, we can consider the
graph of components Gc = (Vc,Ec), whose vertices are strongly connected
components of the graph G1 and edges are inherited from that graph in
a natural way. There is a simple algorithm computing strongly connected
components of a graph in O(n+m) time.

Obviously the graph of components is a directed acyclic graph. We sort
it topologically and consider its vertices in non-ascending order. This can be
done in linear time as well.

We say that we accept a component when that component is chosen and
included in W while performing the algorithm. Similarly, we say that we
reject a component if we decide not to choose the component. Note that if we

24 Gates

reject a component, we have to reject all its predecessors as well. Similarly,
if we accept a component, we have to accept all the components induced by
it.

These observations lead to a more efficient version of the previous
algorithm:

1. Generate the inference graph G1.

2. Find strongly connected components of G1 and build a graph of
components Gc.

3. If there are two opposite vertices in a component, reject this component
(and all its predecessors).

4. Sort the components topologically, and process them in non-ascending
order:

• If the current component has not been rejected yet, accept it.

• For each vertex in the accepted component reject the component
containing the opposite vertex (and consequently all its predeces-
sors).

5. If exactly m vertices have been accepted, they form a correct solution.
Otherwise a solution does not exist.

Because of the topological ordering of components, each time we accept
a component C, all components induced by C have already been accepted.
Indeed, if one of those components had been rejected before, then C would
also have been rejected as its predecessor. It is also clear that set W does
not contain any conflicts. As a result, if the algorithm finds a solution, it is
correct. All we have to do is to show that if a solution exists, this algorithm
will find it. It is a consequence of the previous algorithm and Lemma 1, as
we reject all problematic vertices in the third step of our algorithm.

As we mentioned before, steps 1–3 can be done in linear time. Moreover,
we accept or reject each component exactly once. Therefore, the fourth step
also runs in linear time. Hence, the running time of the presented algorithm
is O(n+m).

Martins Opmanis
Task idea and formulation

Marian M. Kędzierski
Analysis

BOI’2008

Gloves

In the dark basement of chemistry professor Acidrain’s house there are two
drawers with gloves — one with left hand and other with right hand gloves.
In each of them there are gloves of n different colours. Professor knows how
many gloves of each colour there are in each drawer (the number of gloves of
the same colour may differ in both drawers). He is also sure that it is possible
to find a pair of gloves of the same colour.
Professor’s experiment may be successful only if he uses gloves of the same

colour (it does not matter which one), so before every experiment he goes to
the basement and takes gloves from the drawers hoping that there will be at
least one pair of the same colour. It is so dark in the basement that there is no
possibility to recognize colour of any glove without going out of the basement.
Professor hates going to the basement more than once (in case there was no
pair of gloves of the same colour), as well as bringing unnecessarily large
amounts of gloves to the laboratory.

Task

Write a program that:

• reads the number of colours and the number of gloves in each colour in
each drawer from the standard input,

• calculates the smallest total number of gloves which must be taken to be
sure that among them it is possible to find at least one pair of gloves of
the same colour (it is necessary to specify the exact number of gloves to
be taken from each drawer),

• writes the result to the standard output.

Input

The first line of the standard input contains one positive integer n (1 6n6 20)
describing the number of distinct colours. The colours are numbered
from 1 to n. The second line of input contains n non-negative integers

26 Gloves

0 6 a1,a2, . . .an 6 10 8, where ai corresponds to the number of gloves of colour
number i in the drawer with left hand gloves. Finally, the third line of input
contains n non-negative integers 0 6 b1, b2, . . . , bn 6 10 8, where bi corresponds
to the number of gloves of colour number i in the drawer with right hand gloves.
Additionally, in test cases worth 40% of points, n6 4 and ai, bi 6 10 .

Output

The first line of the standard output should contain a single integer — the
number of gloves which must be taken from the drawer with left hand gloves.
The second line of output should contain a single integer — the number of
gloves which must be taken from the drawer with right hand gloves. The sum
of these two numbers should be as small as possible. If there are several correct
results, your program should output any of them.

Example

For the input data:
4
0 7 1 6
1 5 0 6

the correct result is:
2
8

Solution

Let us denote by Zn the set of all considered colours, i.e:̇

Zn = {1,2, . . . ,n}

For any X ⊆ Zn let us denote by AX the number of all left gloves of colours
from the set X , and by BX the number of all right gloves of colours from the
set X . Formally:

AX = ∑i∈X ai and BX = ∑i∈X bi

By L = AZn = a1 + . . .+an we will denote the total number of left gloves, and
by R = BZn = b1 + . . .+bn we will denote the total number of right gloves.

We will call a pair (l,r) acceptable if and only if we can take l left gloves
and r right gloves (i.e. l 6 L and r 6 R) and taking l left gloves and r right
gloves guarantees, that we have taken at least one pair of equally-coloured

Gloves 27

gloves. We say, that pair (l,r) dominates pair (l′,r′) iff l > l′ and r > r′, or
l > l′ and r > r′.

Model Solution

Let X be a subset of Zn and let Y = Zn \X . For any 0 6 l 6 AX and 0 6 r 6 BY ,
choosing l gloves from the first drawer and r gloves from the second drawer
does not guarantee getting one pair of equally-coloured gloves. On the other
hand, if we take l left gloves and r right gloves from respective drawers, and
for every X ⊆ Zn and Y = Zn \X we have:

l > AX ∨ r > BY , (1)

then we have taken at least one pair of equally-coloured gloves. To prove it,
it is enough to consider any choice of l left gloves and r right gloves, which
does not contain any equally-coloured pair and observe that for the partition
of Zn: X = {i ∈ Zn : a′i > 0},Y = {i ∈ Zn : a′i = 0} (where a′i denotes the
number of gloves of colour i taken from the first drawer) the condition (1) is
not satisfied.

Basing on the above observation we can design the following algorithm:
Let us consider all the subsets X ⊆ Zn. For each such X , we compute the
numbers A = AX and B = BZn\X . We can view a rectangle on the plane
[0,A]× [0,B], representing all the points (l,r), that do not satisfy (1). We
can generate all such rectangles, by considering all subsets X ⊆ Zn. Their
sum (as subsets of R2) is a ‘staircase shaped’ polygon, as shown below:

B

A

S

28 Gloves

This figure shows all the points (l,r), which are not acceptable. Now we
only need to find the minimal (in the sense of the sum of coordinates) point
with integer coordinates outside the staircase polygon, but inside the rectangle
[0,L]× [0,R].

The model solution considers all 2n pairs (A,B) and finds these pairs that
are not dominated by other pairs, that is are the vertices of the ‘staircase’
polygon. The pairs are processed in the lexicographical order using a stack.
The stack contains these pairs among processed so far, that are not dominated.
Whenever we add a pair, the pairs dominated by it are on the top of the stack
and can be easily removed. Then such a pair is put on top of the stack. Since
each pair can be put and removed from the stack only once, the amortized
cost of processing the pairs is O(2n). Finally, the result is the ’north-east’
neighbour of one of concave vertices of the ‘staircase’ polygon.

The overall time complexity of the algorithm is O(2n · n), since the
dominating phase is sorting 2n pairs.

Alternative Solution

There is one alternative solution worth mentioning. It is efficient for large n
and small number of gloves. It uses dynamic programming similar to the one
used for the knapsack problem. We compute values t[0..L], where t[u] is the
minimal value of bi1 + . . .+bik , over all such sets {i1, . . . , ik} ⊆ Zn for which
ai1 + . . .+aik = u (if no such subset exists then t[u] = ∞). In other words, pairs
(0,R− t[0]),(1,R− t[1]), . . . ,(L,R− t[L]), for which t[i] 6= ∞, correspond to
some points on the boundary of the ‘staircase’ polygon, including all convex
vertices (with positive coordinates). Values of the array t can be computed
exactly as in the knapsack problem, for objects with weights ai and prices bi,
and minimizing the total price.

Zbigniew Czech
Task idea and formulation

Jakub Łącki
Analysis

BOI’2008

Grid

The map of Byteland is drawn on a grid of size n×m (n is the vertical
dimension, m is the horizontal dimension). The horizontal lines marking the
division are called parallels, and are numbered from 0 to n, while the vertical
lines of the division are called meridians, and are numbered from 0 to m (see
figure on the next page).
Weather forecasting is a serious issue in Byteland. For each unit square

of the grid a certain amount of computation time is required to prepare the
forecast. Due to terrain conditions and other factors this time may vary from
square to square. Until very recently the forecasting system was processing the
unit squares one after another, so it took as long as the sum of all the unit
times to prepare the complete forecast.
You have been asked to design a new system, running on a multiprocessor

computer. To share the computations among processors, the area of Byteland
should be divided by r parallels and s meridians into (r+ 1)(s+ 1) smaller
rectangles. Each processor will cover one rectangle of this division and
will process the squares of this rectangle one after another. This way the
computation time for such rectangle will be the sum of all computation times
of the unit squares contained in this rectangle. The computation time of
the complete forecast will be the maximum among computation times of the
individual processors.
Your task is to find the minimal possible computation time for some choice

of r parallels and s meridians.

Task

Write a program, that:

• reads the dimensions of the map of Byteland, the required number
of parallels and meridians and the unit computation times from the
standard input,

• finds the minimal time required to compute the complete forecast,

• writes the obtained value to the standard output.

30 Grid

Input

The first line of the input contains four integers n, m, r and s, separated
by single spaces (1 6 r < n 6 18 , 1 6 s < m 6 18). The following n lines
contain the computation times of the unit squares. The j-th number in the
(i+ 1)-st line is ci, j — the time required to prepare the weather forecast for
the unit square located between the (i−1)-st and i-th parallel and between the
(j−1)-st and j-th meridian (1 6 i6 n, 1 6 j 6m, 0 6 ci, j 6 2 000 000).
Additionally, in test cases worth 40% of points, n and m will not exceed

10 .

Output

Your program should write exactly one line. It should contain one integer —
the optimal computation time.

Example

For the input data:
7 8 2 1
0 0 2 6 1 1 0 0
1 4 4 4 4 4 3 0
2 4 4 4 4 4 3 0
1 4 4 4 8 4 4 0
0 3 4 4 4 4 4 3
0 1 1 3 4 4 3 0
0 0 0 1 2 1 2 0
the correct result is:
31

3

20

0

0

0

0

0 0 0

2

4 4 4

2 4 4 3

4 8

1 1 3

1 2 1 20

0

1

1

44

3 044

00 11

3

0

44

444

4 4

4 4 4 4 4 330

8765431

7

6

5

4

1

2

0

6

The 2-nd and 4-th parallel and the 4-th meridian divide the country into
6 rectangles with computation times 21, 13, 27, 27, 17, 31. The computation
time of the complete forecast is 31.

Solution

The simplest solution is to consider all
(n

r

)(m
s

)
placings of lines. However,

if we fix placing of lines going in one direction, then the optimal placing of

Grid 31

lines going in the other direction can be computed much faster. There are two
possible approaches:

• Let us fix a placing of all horizontal lines. We can use binary search to
find the optimal computation time. Given a candidate for the optimal
computation time we can place the vertical lines from left to right using
a greedy approach: each vertical line should be put as far to the right as
possible. If such placing is impossible, then the candidate value is less
then the minimal computation time. Using this criterion we can find
the exact minimal computation time using binary search.

Of course, we have to consider all possible placings of all horizontal
lines. Hence, this solution runs in O(

(n
r

)
nm log(S)) time, where S is

the sum of all computation times for individual squares.

• For each placing of horizontal lines, we can calculate the minimal
computation time using dynamic programming. Let min[i][j] be the
minimal computation time of the first i columns divided by j meridians.
Clearly, we have:

min[i][j] = min
j6t6i

max(min[t][j−1],calc_time[t][i])

where calc_time[t][i] denotes the maximum among the computation
times of rectangles cut by meridians t and i (for the given placing of
horizontal lines). Indeed, each of the inner maxima describes a choice
of the meridian number t as the last one.

The array calc_time[i][j] can be easily preprocessed in O(m2n) time.
Having it, one can compute the array min[i][j] in the same time
complexity using the above formula. The overall running time of the
algorithm is O(

(n
r

)
m2n)).

It is noteworthy, that in both solutions we should first preprocess the input to
be able to determine the sum of unit computation times in rectangle rectangle
in a constant time. Let sum[a][b] be the the sum of unit computation times in
a rectangle cut by parallels 0,a and meridians 0,b. This array can be easily
filled, using dynamic programming, in O(nm) time, as:

sum[a][b] = cost[a][b]+ sum[a−1][b]+ sum[a][b−1]− sum[a−1][b−1]

where cost[a][b] denotes the computation time of a corresponding unit
square. Now, the sum of unit computation times in a rectangle cut

32 Grid

by parallels a and c (a > c), and meridians b and d (b > d) is equal
sum[a][b]− sum[c][b]− sum[a][d]+ sum[c][d].

Other solutions

Brute-Force Solution. In this solution we consider all
(n

r

)(m
s

)
placings of

lines. It runs in O(
(n

r

)(m
s

)
nm) time and scores 40 points.

Genetic Algorithm. This algorithm maintains a pool of candidate solu-
tions. In each step it:

• picks a solution, copies it and then mutates the copy, by introducing
random changes,

• creates a new solution by crossing over some other solutions (for
example, by taking meridians from one solutions and parallels from
the other),

• discards the worst solutions, so that the pool does not grow too large.

It outputs the best solution found and scores 40–60 points, as it can give
incorrect results.

Brute-Force Solution with Pruning. This solution is similar to the brute-
force approach. It places the meridians and parallels starting from the upper
left corner and remembers the best computing time obtained so far. For each
partial placing, if for any rectangle we have:⌈

sum of all computing times

number of parts this rectangle is going to be divided into

⌉
> best result obtained so far

we know that completing this partial placing would not give us a better result.
This solution is in many cases faster than optimal solutions. However, in
some specific situations it can be even worse than the brute-force algorithm.
It scores c.a. 50 points.

Brute-Force Solution with Pruning and Binary Search. It is very similar
to the above solution, but instead of improving the best result in each step, it
looks for the optimal solution using binary search. It scores 50 points.

Grid 33

Correcting Algorithm. This algorithm chooses at random many divisions
and tries to correct each of them. The correction step consists in moving one
of the dividing parallels or meridians by one in a direction resulting in the
reduction of the total computation time. The corrections are performed until
no improvement is possible. The algorithm tries to consider as many initial
divisions as the time limit allows and outputs the best obtained computation
time. This solution scores 50–60 points.

Martin Maas, Wolfgang Pohl
Task idea and formulation

Filip Wolski
Analysis

BOI’2008

Mafia

The police in Byteland got an anonymous tip that the local mafia bosses are
planning a big transport from the harbour to one of the secret warehouses in
the countryside. The police knows the date of the transport and they know that
the transport will use the national highway network.
The highway network consists of two-way highway segments, each segment

directly connecting two distinct toll stations. A toll station may be connected
with many other stations. A vehicle can enter or exit the highway network at
toll stations only. The mafia transport is known to enter the highways at the
toll station closest to the harbour and leave it at the toll station closest to the
warehouse (it will not leave and re-enter the highways in between). Special
police squads are to be located in selected toll stations. When the transport
enters a toll station under surveillance, it will be caught by the police.
From this point of view, the easiest choice would be to place the police

squad either at the entry point or the exit point of the transport. However,
controlling each toll station has a certain cost, which may vary from station
to station. The police wants to keep the overall cost as low as possible, so they
need to identify a minimal controlling set of toll stations, which satisfies
the two conditions:

• all traffic from the harbour to the warehouse must pass through at least
one station from that set,

• the cost of monitoring these stations (i.e. the sum of their individual
monitoring costs) is minimal.

You may assume that it is possible to get from the harbour to the warehouse
using the highways.

Task

Write a program, that:

• reads the description of the highway network, the monitoring costs and
the locations of the entry and exit points of the transport from the
standard input,

36 Mafia

• finds a minimal controlling set of toll stations,

• writes this set to the standard output.

Input

The first line of the standard input contains two integers n and m
(2 6 n6 200 , 1 6m6 20000) — the number of toll stations and the number
of direct highway segments. The toll stations are numbered from 1 to n.
The second line contains two integers a and b (1 6 a,b 6 n, a 6= b) —

the numbers of the toll stations closest to the harbour and to the warehouse,
respectively.
The following n lines describe the monitoring costs. The i-th of these lines

(for 1 6 i6 n) contains one integer — the monitoring cost of the i-th station
(which is positive number not exceeding 10 000 000).
The following m lines describe the highway network. The j-th of these lines

(for 1 6 j 6 m) contains two integers x and y (1 6 x < y 6 n), indicating
that there is a direct highway segment between toll stations numbered x and y.
Each highway segment is listed once.
Additionally, in test cases worth about 40 points, n6 20 .

Output

The only line of the output should contain the numbers of toll stations in a
minimal controlling set, given in increasing order, separated by single spaces.
If there is more than one minimal controlling set, your program may output
anyone of them.

Mafia 37

Example

For the input data:
5 6
5 3
2
4
8
3
10
1 5
1 2
2 4
4 5
2 3
3 4

1

2

3

4

5

10

2
4

8

3

Harbour

Warehouse

the correct result is:
1 4
The figure shows the highway network with the toll station numbers (in
the upper-left corners) and the monitoring costs. Stations number 1 and 4
constitute the minimal controlling set with total controlling cost 5.

Solution

Let us have a look at a similar problem, in which every highway has a
certain monitoring cost and we have to select the highways to monitor, so that
every path from harbour to warehouse leads through at least one monitored
highway. Of course the total monitoring cost has to be minimal.

This problem is known as a minimal cut problem. The Max-flow min-cut
theorem states that finding a minimal cut is equivalent to finding a maximal
flow in a graph. Once we find the maximal flow, finding the minimal cut
is pretty simple. We compute the set of vertices that are reachable from the
source with augmenting paths of a positive residual capacity. The minimal
cut is the set of saturated edges (edges with residual capacity equal 0), leading
from reachable vertices to unreachable ones. More on maximal flows and the
proof of Max-flow min-cut theorem can be found in [1].

The problem described in the problem statement can be transformed into
a minimal cut problem in the following way. For every vertex v in an original

38 Mafia

graph, we create its copy — v′. For any vertex v, there’s an edge from
v to v′, with flow limit equal to the cost of that vertex being observed by
police. Additionally, every unidirectional edge u → v in the original graph is
represented by an edge leading from u′ to v, with infinite flow limit. Every
bidirectional edge is treated as a pair of unidirectional edges going in both
directions.

Now, if we find minimal cut in such network (between vertices a and b′),
then edges belonging to that cut (every one of them would be leading from
v to v′, for some original vertex v) will form an optimal “police covering” of
the graph.

Model Solutions

The model solution uses Edmonds-Karp algorithm to find a maximal flow.
In general, its running time is O(V E2) (where V is the number of vertices
and E is the number of edges), but in this case, there are only V edges with
limited flow in our graph. As a result this algorithm runs in O(V 2E) time. The
maximal flow can also be found using many other algorithms. All solutions
that run faster that the simplest implementation of the Ford-Fulkerson method
should score 100 points.

Other Solutions

Ford-Fulkerson Method. This solution uses plain Ford-Fulkerson algo-
rithm to find a maximal flow. In each step, it tries to find an augmenting
path using DFS. Its time complexity can be as high as O(E f), where f is the
maximum flow in the graph. It scores c.a. 80 points.

Brute-Force Solution. This solution considers all 2V subsets of vertices
and tries to block each one. It runs in O(2V E) time and scores around 40
points.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein, Introduction to Algorithms, 2001.

Paweł Parys,
Szymon Acedański
Task idea and formulation

Anna Niewiarowska,
Jakub Radoszewski

Analysis

BOI’2008

Magical stones

Famous stones Xi-n-k can only be found in Wonderland. Such a stone is
simply a granite board with an inscription consisting only of letters X and I.
Each board contains exactly n letters. There are not more than k positions in
each board where letters X and I are next to each other.
The top and bottom sides of the stones are not fixed, so the stones can be

rotated upside-down. For instance two figures below depict exactly the same
stone:

IXXIIXXX XXXIIXXI

Fig. 1: Two ways of looking at the same stone. This stone is of type Xi-8 -3 ,
but also Xi-8 -4 (and also of any type Xi-8 -k for k> 3).

No two magic stones in Wonderland are the same, i.e. no two stones
contain the same inscription (remember that the upside-down rotation of a
stone is allowed).
If it is possible to read the inscription of some stone in two different ways

(using the upside-down rotation) then the canonical representation of the
stone is defined as the lexicographically less1 of these two ways of reading the
inscription.
If a stone’s inscription is symmetrical, i.e. the upside-down rotation does

not change it, then its canonical representation is defined as the unique way
of reading this inscription.

Example: There are exactly 6 stones of type Xi-3-2. Their canonical
representations written in lexicographical order are: III, IIX, IXI, IXX, XIX
and XXX.

Alice is a well-known expert on the Xi-n-k stones from Wonderland. She
would like to create a lexicographical index of the canonical representations of

1We say that inscription A is lexicographically less than B (assuming that lengths of A and
B are the same) if A contains letter I and B contains letter X at the first position where the
inscriptions differ.

40 Magical stones

all stones of type Xi-n-k (for some specific values of n and k). What inscription
should be written at position i of the index, for a given value of i?

Task

Write a programme which:

• reads numbers n, k and i from the standard input,

• determines the i-th (in the lexicographical order) canonical representa-
tion of a Xi-n-k stone,

• writes the result to the standard output.

Input

The first and only line of the standard input contains three integers n, k and
i (0 6 k < n 6 60, 0 < i < 1018) separated by single spaces.

Output

The first and only line of the standard output should contain the i-th (in the
lexicographical order) canonical representation of a Xi-n-k stone.
If the number of Xi-n-k stones is less than i then the first and only line of

output should contain expression NO SUCH STONE.

Example

For the input data:
3 2 5

the correct result is:
XIX

and for the input data:
3 2 7

the correct result is:
NO SUCH STONE

Solution

The task is, described alternatively, to find the i-th word in the lexicographical
order, of length n, composed of letters I and X, satisfying two conditions:

Magical stones 41

(a) letters I and X are next to each other at at most k positions,

(b) the word read backwards is not lexicographically less than the original
word.

From now on, we will call each word satisfying the above conditions a correct
word. Every two neighbouring positions of a word which contain different
letters are called a letter change.

We will find the letters of the i-th word one by one, from left to right.
We start with an empty prefix of the word, which we will call ε. In the m-
th step of the algorithm (starting from m = 0), knowing a prefix a1 . . .am of
the requested word, our task is to find its next letter. In order to perform
this operation, we compute the number of correct words that start with the
prefix a1 . . .amI; if i is not greater than this number then — thanks to the
lexicographical ordering of correct words — the (m + 1)-st letter of the
requested word is I. Otherwise, it is X.

To help us precisely formulate the described idea of the solution, let us
introduce the following notation: σ(a1 . . .am) denotes the number of correct
words that start with the prefix a1 . . .am.

With those notations, model solution can described by the following
simple pseudo-code:

1: pre f ix := ε;
2: j := i;
3: for m := 0 to n−1 do
4: begin
5: if (j 6 σ(pre f ixI)) then pre f ix := pre f ixI;
6: else
7: begin
8: pre f ix := pre f ixX;
9: j := j−σ(pre f ixI);
10: end;
11: end;
12: if (j > 1) then return NO SUCH STONE;
13: else return pre f ix;

The case when the correct result is NO SUCH STONE requires some
explanation. This happens only if i > σ(ε). In such case the final value of
pre f ix in the above algorithm will be XXX. . .X and j will be greater than 1.
However, we notice that it is sufficient to check the latter condition, because
it can be satisfied if and only if i > σ(ε).

42 Magical stones

How to Compute Values of σ

Firstly let us introduce one more notation: σ(a1 . . .am,bl . . .b1) denotes the
number of correct words that start with the prefix a1 . . .am and end with the
suffix bl . . .b1. If m + l > n then the prefix and suffix overlap. Each correct
word that starts with the prefix a1 . . .am is of exactly one of the following
forms:

(1) l final letters of the word (where 0 6 l < m) read backwards are exactly
the same as l starting letters of the word, I is the (l + 1)-st letter from
the beginning of the word and X is the (l +1)-st letter from the end of the
word.

(2) m final letters of the word read backwards are the same as m starting
letters of the word (read from left to right).

This leads directly to the following formula:

σ(a1 . . .am) =
m−1

∑
l=0

(
[al+1 = I] ·σ(a1 . . .am,Xal . . .a1)

)
+σ(a1 . . .am,am . . .a1)

(1)
where [al+1 = I] is equal to 1 if al+1 = I and 0 otherwise. In general,
expression [condition], where condition is a logical statement, has a value
of 1 if the condition is true and 0 otherwise.

We now need to show how to compute the summands from the above
equation. Note that we can assume that am = I, as the pseudo-code only needs
to know the value of σ(pre f ixI). Let us assume that there are exactly km letter
changes in the word a1 . . .am and kl letter changes in the word Xal . . .a1.

Lemma 1. If 2m 6 n (this simply implies that prefix a1 . . .am and suffix
am . . .a1 do not overlap) then:

σ(a1 . . .am,am . . .a1) =

=
1
2
·
b(k−2km)/2c

∑
i=0

(
n−2m+1

2i

)
+

1
2
·
b(k−2km)/2c

∑
i=0

(
b(n−2m+1)/2c

i

)

Proof: The total number of words of the form a1 . . .am . . .am . . .a1 over the
alphabet {I,X} that satisfy condition (a) (i.e. contain at most k letter changes)

Magical stones 43

equals:

S =
b(k−2km)/2c

∑
i=0

(
n−2m+1

2i

)
This holds, because there are n− 2m free positions in the middle of the
word, so a letter change could take place at any of the n− 2m + 1 pairs of
consecutive positions. This explains the binomial coefficients in the formula.
We also know that the number of letter changes in the middle part of the
word is not greater than k− 2km and even, as the middle part of the word is
bounded by a letter am. This explains why the formula contains a sum over
{0, . . . ,b(k−2km)/2c}.

The number of palindromic words of the form a1 . . .am . . .am . . .a1 that
satisfy condition (a) is:

Sp =
b(k−2km)/2c

∑
i=0

(
b(n−2m+1)/2c

i

)
This formula holds for even n, because one half of the word can be filled
arbitrarily using no more than

⌊ k−2km
2

⌋
letter changes. The remaining part

of the word is uniquely determined and contains the same number of letter
changes. If n is odd, the leading bn/2c letters define bn/2c trailing letters, as
well as the middle letter, as only one letter can be inserted in the middle of
the word without adding new letter changes.

The number of words of the form a1 . . .am . . .am . . .a1 that satisfy con-
dition (a) and are not palindromes is S − Sp. Exactly one half of such
words are correct, as if we reverse a correct word w it becomes incorrect
and non-palindromic. On the other hand, all palindromic words of the form
a1 . . .am . . .am . . .a1 are correct. This gives us the following formula for the
total number of correct words of the form a1 . . .am . . .am . . .a1:

1
2
· (S−Sp)+Sp =

1
2
·S +

1
2
·Sp

which is equivalent to the formula from Lemma 1. �

Lemma 2. If m+ l +1 6 n and al+1 = I,am = I then:

σ(a1 . . .am,Xal . . .a1) =
b(k−km−kl−1)/2c

∑
i=0

(
n−m− l

2i+1

)

44 Magical stones

Proof: Here we can choose letter changes from n−m− l positions, knowing
that the total number of letter changes is odd (because am = I 6= X) and not
greater than k− km − kl . Notice that the condition al+1 = I already implies
that every possible choice of middle letters of the word a1 . . .am . . .Xal . . .a1
leads to a correct word — this is the reason why the formula from Lemma 2
is much simpler than the previous one (from Lemma 1). �

Finally, if the prefix and the suffix overlap (2m > n or m+ l +1 > n) then
the number of correct words with the desired prefix and suffix is equal to 0
or 1 and this number can be computed in a straightforward manner. This,
together with formulas from Lemmas 1 and 2, concludes the algorithm for
computing the values of the σ function.

Time complexity of the algorithm

Let us analyse the time complexity of the whole algorithm. In the pseudo-
code of the algorithm values of the σ function are computed O(n) times (line
5). Every such computation is done using Formula (1) and requires O(n)
computations of values of σ(some_prefix,some_suffix). Finally every such
value can be computed using Lemma 1, Lemma 2 or direct computation if
some_prefix and some_suffix overlap — each of these requires O(n) opera-
tions, provided that all values of binomial coefficients

(a
b

)
for 0 6 a,b 6 n are

precomputed. This preprocessing can be done in O(n2) time complexity with
a well-known formula:(

a
b

)
=

(
a−1
b−1

)
+

(
a−1

b

)
for a > b > 0

and simple formulas for border cases like a < b or a = b, or b = 0. The total
time complexity of the algorithm is therefore O(n · n · n) + O(n2) = O(n3).
The upper limit for n in our task is equal to 60, so this solution is fast enough
to receive perfect score.

An improvement of time complexity of the algorithm is, however,
possible. It can be achieved by:

• computation of partial sums ∑
j
i=0

(c
2i

)
and ∑

j
i=0

(c
2i+1

)
, for j = 0,1, . . .,

bn/2c,

• computation of the numbers km and kl in constant time (using values
computed for shorter prefixes and suffixes),

Magical stones 45

• computation of values of σ function for overlapping prefixes and
suffixes in O(1) time (using values computed for shorter prefixes and
suffixes).

These optimizations lead to computation of values of σ(some_prefix,
some_suffix) in constant time and therefore reduce the time complexity of the
algorithm to O(n2). Because this improvement is not very elegant to describe
and does not change the running time of the solution for n 6 60 significantly,
detailed formulation of the O(n2) algorithm is left for n 6 60 to the Reader.

How to Avoid Binomial Coefficients

There is also another way to compute values σ(some_prefix,some_suffix). It
does not involve any binomial coefficients but only dynamic programming
technique. Here we also assume that some_prefix and some_suffix do not
overlap.

Let us notice that the value σ(a1 . . .am,am . . .a1) (the one computed in
Lemma 1) is simply equal to the number of correct words of length n−2m+2
that start with letter am and end with am, in which the number of letter changes
is not greater than k− 2km. On the other hand, value σ(a1 . . .am,Xal . . .a1)
(the one computed in Lemma 2) is equal to the number of any words of
length n− (m−1)− l that start with letter am and end with letter X, in which
the number of letter changes is not greater than k− kl − km. In the dynamic
programming solution we compute values of cells of two integer arrays: C
and A (letter C corresponds to correct words, and A — to any words), each of
which is 4-dimensional. The dimensions represent:

• the number of letters of the word,

• the bound on the number of letter changes in the word,

• the first letter of the word,

• the last letter of the word.

C[n][k][b][e] represents the number of correct words of length n, containing at
most k letter changes, starting with letter b and ending with e. A[n][k][b][e] is
defined similarly.

From now on we, concentrate on filling array C; computing values of cells
of array A is quite similar but easier and is therefore left to the Reader. Border

46 Magical stones

cases of the computation are:

C[n][k][b][e] = 0 for n 6 0 or k < 0

C[1][k][b][e] = [b = e]

C[n][0][b][e] = [b = e]

C[2][k][b][e] = [b 6= e∧b 6 e]

Let us now assume that none of the border conditions holds, so n > 3 and
k > 1. If b > e (i.e. b = X,e = I) then

C[n][k][b][e] = 0

else if b < e then
C[n][k][b][e] = A[n][k][b][e]

because this condition already implies condition (b). Finally if b = e then

C[n][k][b][e] = ∑
b′∈{I,X}

∑
e′∈{I,X}

C[n−2][k− [b 6= b′]− [e 6= e′]][b′][e′]

Let us now analyze the time complexity of the dynamic programming
solution. The size of each of the arrays A and C is O(n2). Computing the
value of any cell of A and C can be done in constant time. Therefore the time
complexity of the solution is either O(n3) or O(n2), depending on whether
the previously described tricks are applied or not.

