
Task Description DAY-1
BOI 2006
Heinola
Finland BITWISE

BOI 2006 Page 1 of 2 16.05.06 / 9:24

BITWISE EXPRESSIONS

In signal processing, one is sometimes interested in the maximum value of a certain
expression, containing bitwise AND and OR operators, when the variables are
integers in certain ranges. You are to write a program that takes such an expression
and the range of each variable as input and determines the maximum value that the
expression can take.

For simplicity, the expression is of a specific form, namely a number of
subexpressions in parentheses separated by the bitwise AND operator (denoted &).
Each subexpression consists of one or more variables separated by the bitwise OR
operator (denoted |). Using this convention, it is possible to completely specify the
expression by giving the number of subexpressions and, for each subexpression, the
number of variables in the subexpression. The variables are simply numbered
according to their occurrence in the expression.
An example will clarify this. If the number of subexpressions is 4 and the number of
variables in each subexpression is 3, 1, 2, and 2, then the expression will be

E = (v1 | v2 | v3) & (v4) & (v5 | v6) & (v7 | v8)
The bitwise operators are defined in the common way. For example, to perform the
operation 21 & 6, we first write down the binary form of the numbers (operands):
10101 and 110 (since 21 = 24 + 22 + 20 and 6 = 22 + 21). Every binary digit in the result
now depends on the corresponding digit in the operands: if it is 1 in both operands, the
resulting digit will be one, otherwise it will be zero. As is illustrated below to the left,
the resulting value is 4. If instead we want to calculate 21 | 6, the procedure is the
same except that the resulting digit will be one if the corresponding digit is one in any
of the operands, and thus it will be zero only in the case that the digit is zero in both
operands. As is illustrated below in the center, the result is 23. The generalization to
more than two operands is straightforward. The rightmost example below illustrates
that 30 & 11 & 7 = 2.

 11110
 10101 10101 01011
 & 00110 | 00110 & 00111
 00100 10111 00010

INPUT

The input is read from a text file named bitwise.in. In the first line, two integers
N and P are given, where N is the total number of variables (1 N 100) and P is the
number of subexpressions (1 P N). In the next line, P integers (K1, K2, ... ,KP) are
given, where Ki is the number of variables in the i-th subexpression. The Ki are all
greater than or equal to 1 and their sum equals N. Each of the following N lines
contains two integers Aj and Bj (0 Aj Bj 2 000 000 000), specifying the range of
the j-th variable in the expression according to Aj vj Bj.

Task Description DAY-1
BOI 2006
Heinola
Finland BITWISE

BOI 2006 Page 2 of 2 16.05.06 / 9:24

OUTPUT

The output is written into a text file named bitwise.out. The content should be
one row with a single integer: the maximum value that the expression can take.

EXAMPLE

Assume that we want to limit the values of the eight variables in the expression above
according to 2 v1 4, 1 v2 4, v3 = 0, 1 v4 7, 1 v5 4, 1 v6 2, 3 v7 4,
and 2 v8 3. This corresponds to the following content of bitwise.in:

8 4
3 1 2 2
2 4
1 4
0 0
1 7
1 4
1 2
3 4
2 3

If writing in binary notation, one of the best assignments gives the expression
(100 | 011 | 000) & (111) & (100 | 010) & (100 | 011), from which we note that all
subexpressions may become equal to 7 except the third. Thus, the program should
write a file bitwise.out with the content:

6

GRADING

In 30% of the test cases, the number of possible assignments is less than one million.

